

METADATA PUBLICATION AND EXTRACTION FROM DUTCH CONVENTIONS

SUBMITTED IN PARTIAL FULFILLMENT FOR THE DEGREE OF MASTER OF SCIENCE

SANDER OUD

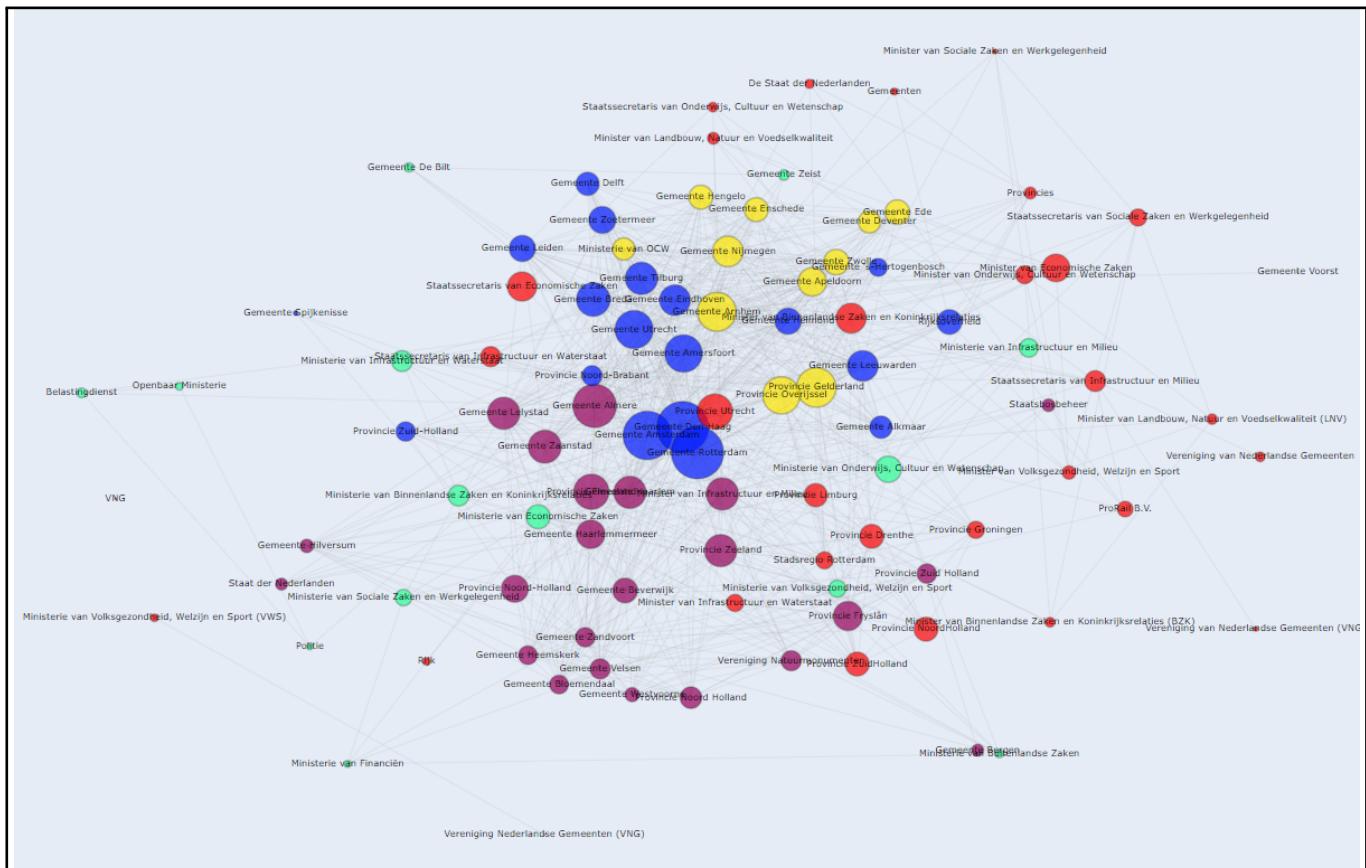
12288667

MASTER INFORMATION STUDIES

DATA SCIENCE

FACULTY OF SCIENCE
UNIVERSITY OF AMSTERDAM

SUBMITTED ON 29.06.2024



	UvA Supervisor
Title, Name Affiliation Email	Maarten Marx UvA Supervisor m.j.marx@uva.nl

1 ABSTRACT

2 This research looks into how many covenants are published by
3 Dutch governmental organizations in accordance with the Dutch
4 openness act (WOO), and with how much metadata they come
5 with. Next to that, the ability to gather the metadata afterwards
6 using GPT-3.5 is tested. Covenants of 302 different organisations
7 have been scraped, resulting in a dataset of 3011 documents. The
8 publication of metadata with the covenants can be improved in
9 many ways. Generally, larger governmental organizations perform
10 better on this front than smaller ones. GPT-3.5's ability to classify
11 covenants, extract dates and parties, model topics and descriptions
12 is tested. The largest flaw in performing this task was concluded to
13 be the inability of the model to take in more than 4096 characters.
14 While the GPT-3.5 showed potential, the easiest way to improve
15 findability for covenants is publishing them with metadata.

16 KEYWORDS

17 Government, WOO, GPT-3.5, Metadata extraction

18 GITHUB REPOSITORY

19 <https://github.com/sanderoud/Thesis-project-covenants>

20 1 INTRODUCTION

21 In 2022, the Dutch Government Openness Act (WOO) replaced
22 the Open Government Law (WOB). Both laws require that all govern-
23 ment agencies make information about their activities publicly
24 available [20]. This transparency allows Dutch citizens to super-
25 vise the government, aiming to increase trust in democracy. Both
26 the WOO and the WOB state that citizens are allowed to request
27 information from local and national governmental organizations.
28 One aspect introduced in the WOO that was not in the WOB, is
29 the law's active disclosure requirement. Seventeen different types
30 of government documents must be published on a web-accessible
31 platform, so citizens are able to find the documents easily. Where
32 possible, documents have to be published in electronic form, in a
33 machine-readable open format, together with the metadata (article
34 2.4(3a)).

35 Covenants are one of the seventeen document types that hold
36 the active disclosure requirements. A covenant is a written agree-
37 ment between the government and one or more parties. The pur-
38 pose of a covenant is to realize certain policies of the central
39 government [22].

40 Considerable research has been conducted on the FAIRness of
41 articles published because of the WOO. The FAIR principles in-
42 troduced by Wilkinson et al. [13] aim to enhance the ability of
43 machines to automatically find and use the data, in addition to sup-
44 porting its reuse by individuals. They emphasize that data should
45 be findable, accessible, interoperable, and reusable. In the context of
46 the WOO, following these principles in publishing the government
47 documents means the data needed for further research is easily
48 accessible. This can save a lot of time for social researchers in the
49 data collection phase of their research.

50 However, despite the potential benefits of following the FAIR
51 principles, earlier research into the extent to which WOO articles
52 are published in accordance with these principles [16] concluded
53 that most published documents score low on FAIRness. Specifically
54 in relation to covenants, the research states that the FAIRness
55 score can be improved upon by utilizing its metadata structure.
56 The document type inherently holds a semi-structured form that
57 can be leveraged to enhance findability and interoperability. The
58 agreements published in the covenants include metadata about the
59 involved parties, subjects, and the date and place of signing. When
60 this metadata is properly provided, most of the information in a
61 covenant can be deduced at a glance, together with significantly
62 improving the findability and interoperability of the data.

63 In a report published by Marx and Kamps, the digital sustainabil-
64 ity of all published documents was tested for ten provinces of the
65 Netherlands [14]. While the report states that the active disclosure
66 of documents of the WOO has improved, there is still a lot to be
67 gained on the digital sustainability of the publications. The report
68 reviewed four different aspects of digital sustainability in the WOO
69 files.

70 The first aspect looked into is the existence of metadata with the
71 given publication. The minimum metadata of a WOO file include a
72 title and a brief description and the dates of request and decision.
73 None of the 10 provinces provide all of this metadata.

74 In addition to the metadata, the machine readability was tested.
75 Machine readability entails the structuring of the metadata and
76 whether the released files are processable by computers. A WOO file
77 consists of four elements: the request, the decision, the inventory,
78 and the released documents. Frequently all elements are put into the
79 same file, without real borders between the elements. This means
80 that computers are not able to distinguish the different elements in
81 a WOO file. This way of publishing is a lot more time-consuming
82 because the entire document needs to be processed instead of just
83 the relevant part of the document.

84 The files need to be scrapable, this means that they need to be
85 accessible without human interaction. There are a number of
86 aspects that hinder this accessibility: the list of WOO files is not
87 uniform and the formatting changes annually; automatic downloads
88 are deliberately hindered; files are located on Google Drive or other
89 not easily accessible external providers; and finally, meaningless
90 file names.

91 Lastly, there is the referability of the articles. None of the provinces
92 use a persistent form of identifying their articles. The setup of an
93 easy doi would facilitate a lot more clarity and digital sustainability.

94 To address these issues effectively, Marx et al. set up a website
95 to centralize all publications [15]. At the moment, Woogle consists
96 of 3,343,369 documents scraped from the internet. The website
97 allows for the analysis of large-scale computer-assisted diachronic
98 comparative research [15]. Collection of data at large scale often
99 takes 80% of the research time and requires technical skills that
100 social researchers often do not possess. The website provides the
101 collection of data for further research. Covenants are mostly not yet
102 implemented on Woogle and are still scattered across the internet.

103 This research will add to the Woogle project by trying to scrape
104 all covenants from the internet, and publishing them in accordance
105 with the WOO and the FAIR principles. The main obstacle
106 in publishing the covenants in accordance with the WOO is the
107 publication of metadata. As concluded in the research of Marx and
108 Kamps, a lot of the required metadata is missing from the online
109 publications on other websites [14]. This data can therefore not be
110 collected by scraping it from the website with the documents. The
111 only method of acquiring this missing metadata is by structurally
112 getting it from the content of the documents.

113 For the task of extracting metadata, the GPT-3.5 model has been
114 chosen for its versatility in performing language tasks. The ability of
115 GPT-3.5 to structurally gather information from the governmental
116 documents will be tested. For the gathering of subject, date, involved
117 parties and description three different machine learning capabilities
118 of the model will be tested. For the subject of the covenant topic
119 modeling will be utilized. This machine learning technique is used
120 to identify patterns and themes within a collection of documents by
121 grouping words into topics, allowing for an understanding of the
122 underlying structure of the text [9]. For dates and involved parties
123 Named Entity recognition will be tested. Named Entity Recognition
124 is a fundamental task in natural language processing that involves
125 identifying text spans associated with proper names and classifying
126 them into predefined classes such as organization or dates [4]. For
127 the description text generation will be tested. Text generation is a
128 natural language processing task that involves generating coherent
129 and contextually relevant text based on a given input, leveraging
130 the model's ability to predict and produce human-like language
131 [17].

132 In summary, the focus of this research will be on determining
133 the extent all covenants can be scraped from the internet with
134 relevant metadata. Gathering metadata from publications where
135 possible, and from the content of the documents.

136 The research question central to this paper is as follows:

137 *To what extent is it feasible to semi-automatically gather
138 the covenants of all Dutch governmental agencies along
139 with their accompanying metadata? And if the meta-
140 data is not available, how effectively can we extract it
141 from the document?*

142 To answer the research question, the following subquestions are
143 created:

- 144 (1) How many covenants are there and to what extent can they
145 be structurally retrieved from the web to form a dataset?
- 146 (2) To what extent are covenants published with the necessary
147 metadata?
- 148 (3) To what extent can missing metadata be extracted from the
149 document text?

150 In the related work section of this research the previous counts of
151 covenants published will be looked in to, together with the current
152 research on metadata publication. The choice of using of the GPT-
153 3.5 model over other machine learning models will be argued and
154 other relevant research to the use of GPT-3.5 for data extraction
155 tasks will be looked into. In the method section of this research
156 the method to answering all subquestions will be described per
157 question. In the result section the results of the executed method

158 will be presented. In the discussion these results will be discussed,
159 reflecting back on the theoretical framework. Finally, the conclusion
160 will give answer to the research questions.

161 2 RELATED WORK

162 2.1 Covenant scraping

163 The latest count of the amount of published covenants was done
164 in 1995 and resulted in a total of 154 covenants [19]. The count
165 was executed by the Dutch Court of Audit. The publication of the
166 court lead to the conclusion that the amount of covenants had
167 increased due changing governmental culture where the central
168 government tries to be less binding and regulating.

169 A current count of the amount of covenants does not exist [2].
170 However, when looking at a handful of websites where covenants
171 are published there can be concluded that the increase of con-
172 venants has persisted, making them a more mainstream approach
173 to government action. The website officiebekendmakingen.nl is
174 a platform where all documents of the Dutch Staatscourant and
175 other governmental magazines are published. It currently contains
176 1192 covenants on its own, over a thousand more than the total
177 count of 1995.

178 2.2 Availability of metadata

179 In 2023, Marx and Kamps have already done research to the degree
180 to which provinces provide metadata with their documents [14].
181 The digital sustainability of all provinces was tested by checking if
182 the provinces provided a title, description, date of request, decision
183 date and date of publication. None of the provinces provide all
184 five metadata points. Every province did at least provide a title,
185 and a date. In most of the cases it is not clear on what date it is
186 about. The metadata publication of the provinces is compared to the
187 publication of the ministries. Next to providing a title, a description,
188 a document date and date of publication, they also provide a subject
189 subject of the documents, the research shows that the ministries
190 are overall more structured in the publication of metadata than
191 the provinces. This research expands on the research of Kamps
192 and Marx by also taking municipalities and independent governing
193 bodies into account. Since municipalities are in many cases smaller
194 than the provinces, it is hypothesised that the smaller governmental
195 organisations will be less structured than the ministries.

196 2.3 Metadata gathering

197 Automatic metadata generation provides scalability and usability
198 for digital libraries and their collections [7]. Previously, metadata
199 extraction has been done using machine learning methods. Named
200 Entity Recognition (NER) is the task of detecting mentions of real-
201 world entities from text and classifying them into predefined types
202 such as companies, government agencies or dates. Traditionally,
203 NER systems relied on hand-crafted features and domain-specific
204 knowledge due to limited supervised training data [10]. However,
205 recent advancements have introduced novel neural network ar-
206 chitectures that automate feature detection, reducing the need for
207 extensive feature engineering [5].

208 Spacy's NER model is one of the leading machine learning meth-
209 ods used in named entity recognition [4]. SpaCy can recognize vari-
210 ous types of named entities in a document. For example, Gemeente

211 Amsterdam can be classified as a geopolitical entity and Shell as
212 an organization. SpaCy works by asking a model for a prediction.
213 Because models are statistical and strongly depend on the exam-
214 ples they were trained on, this does not always work perfectly and
215 might need some tuning later, depending on the use case [1].

216 In domain-specific applications, a significant challenge is the
217 scarcity of annotated data, which limits model performance [18].
218 Generic NER tools remain limited in recognizing entities specific
219 to a domain, such as drug use and public health. To improve the
220 domain specific knowledge, pre-labeled data in the domain is re-
221 quired.

222 The topics covered in covenants of Dutch governmental or-
223 ganizations span a large number of domains. The topics cover all
224 different fields that are discussed in politics. Labeling text for the
225 model to train on in all different domains would be highly labor
226 intensive. Therefore, it would be better to find a method that does
227 not require any form of retraining.

228 GPT is a large language model developed by OpenAI that is
229 capable of producing response text that is nearly indistinguishable
230 from natural human language [6]. The GPT models are first trained
231 without supervision on unlabeled data. This way the model learns
232 naturally, same way as a person would. Afterwards the model is
233 trained to improve on specific tasks with the goal of more guided
234 and structured refinement by the creators [12]. The large bene-
235 fit of GPT over other large language models like BERT, RoBERTa
236 and XLNe is that GPT has the ability to generate high-quality text
237 responses [12]. The other models focus on understanding and ana-
238 lyzing the text.

239 The use of GPT to extract metadata from documents has two
240 large benefits. First of all, with 175B parameters and 96 layers
241 trained on a corpus of 499B tokens of web content, it is far the largest
242 language model constructed to date [6]. This training means that
243 for almost all domains the model already has knowledge, meaning
244 additional training is not required. Next to the existing domain
245 knowledge, the model also has the ability to generate text. For
246 generating metadata this is useful for returning words that are
247 lost within enumeration. For example, when the involved parties
248 are "gemeenten Amsterdam and Amstelveen", a NER model will
249 recognise gemeente Amsterdam as an organisation and Amstelveen
250 as a location. A GPT model can see the relation between the word
251 gemeente and Amstelveen and therefore see *gemeente Amstelveen*
252 as an organisation as well.

253 To date, few studies have examined the potential of LLMs in
254 reading and interpreting clinical notes, turning unstructured texts
255 into structured, analyzable data [8].

256 Huang et al. have examined the potential of LLMs in reading and
257 interpreting clinical notes, turning unstructured texts into struc-
258 tured, analyzable data [8]. The study concluded that ChatGPT-3.5
259 has the ability to extract pathological classifications with an overall
260 accuracy of 89%, outperforming NER and keyword search algo-
261 rithms. The added benefit is that it does not require extra annotated
262 data. The research by Huang et al suggests that the use of large lan-
263 guage models is the best method to gather metadata from the Dutch
264 covenants. The largest difference between the lung cancer pathol-
265 ogy notes and this research is the structuredness of the data. A key
266 finding of this research will be how ChatGPT-3.5 handles poorly
267 scanned text and different textual structures in the documents.

268 3 METHODOLOGY

269 3.1 Obtaining all covenants

270 The central government has guidelines for the location of publica-
271 tion of covenants. Most important in these guidelines, everything
272 has to be linked to the WOO-index, a list of all governmental or-
273 ganisations [3].

274 A distinction of four different types of governmental organiza-
275 tions is made [2]. First of all, there are the organizations of the
276 state. These include the ministries of the Netherlands and all their
277 subdivisions. These organizations are required to publish their con-
278 venants in the Staatscourant, which in turn will be uploaded to
279 Officielebekendmakingen.nl. The link to the Officielebekendmakin-
280 gen must be published in the WOO-index. All municipalities and
281 governments can choose their own location of publishing as long
282 as it is listed in the WOO-index. Since, by definition, at least one
283 government organization is part of the covenant, going through
284 the entire WOO-index should result in finding all covenants. What
285 is left are independent governing bodies, which have the choice
286 to publish their documents in the Staatscourant or a location of
287 choice, with the registration of this location in the WOO-index.

288 In practice the link to the location is often not provided in the
289 WOO-index. For organisations of state the WOO-index always links
290 to the page of the Staatscourant, yet there are also covenants on
291 the website of Rijksoverheid.

292 Since the ministries are officially required to publish in the
293 Staatscourant, the website of Officielebekendmakingen.nl was scraped
294 first. On this website all publications of the Staatscourant and other
295 official notification magazines are published. The website makes it
296 possible to filter on covenants. All results from the website were
297 scraped by building a scraper using python library BeautifulSoup
298 [11]. First, all the results were loaded into a textual overview of
299 the HTML of the page. Then all individual items were separated
300 by finding all 'li' tags in the HTML. From this 'li' tag the link to
301 the publication is scraped. The link is used to create a new textual
302 overview of the publication page. From this page the file is scraped.
303 This is the standard scraping procedure used in this research. Most
304 of the publications are from the ministries. Next to that there are
305 some provinces, municipalities and independent governing bodies
306 that publish here.

307 The website Rijksoverheid.nl contains a list of covenants by
308 ministries as well. On this website and advanced search option
309 makes it possible to filter on covenants. The same standard scrap-
310 ing process as Officielebekendmakingen.nl was used. To ensure the
311 completeness of the list of covenants available on the advanced
312 search bar, a second search is conducted on the Rijksoverheid web-
313 site. The main page of the Rijksoverheid website contains a search
314 bar. This keyword search was used with the search term 'convenant'.
315 Every item that contains covenant in its title is scraped using the
316 standard scraping method mentioned above. If new covenants are
317 found in this search that would suggest that the advanced search
318 of the Rijksoverheid is incomplete in its publication of the articles.
319 There is a separate website for the Belastingdienst, which is part of
320 the Ministry of Finances. For this website another standard scraper
321 was build to scrape all results of a keyword search.

324 When looking at the link provided by the WOO-index for the
325 municipalities and provinces, most websites do not provide as many
326 covenants as expected. Instead the municipalities and provinces
327 publish almost all their documents on an external digital platform.
328 This is either with 'Notubiz' or 'Bestuurlijke Informatie'.

329 The URL of Notubiz or Bestuurlijke Informatie always has the
330 same format for each municipality. For Bestuurlijke informatie this
331 is <https://body.bestuurlijkeinformatie.nl>, where body is the name of
332 the governmental body. For Notubiz this is <https://body.notubiz.nl>.
333 To find out what decentralized government uses what platform a
334 list of all 343 municipalities and 12 provinces was composed. All
335 items are tried in both URLs. If the status code of the url is 200 it is
336 scraped.

337 For the provinces and municipalities that use Notubiz a scraper
338 is build that is similar to the standard scraping process. The biggest
339 difference being that clicking the results would not link to a sepa-
340 rate page, but download the results immediately on selecting. The
341 scraper was rebuild to be able to gather all results from the search
342 page. A problem with the website of Notubiz for scraping is that
343 no results exist within the HTML of the page without interacting
344 with it. They are only loaded after a user is actually on the page.
345 This problem is solved by first opening a webdriver using python
346 library Selenium Webdriver [21]. This driver opens the URL of the
347 Notubiz website. Then the driver scrolls to the bottom of the page
348 automatically to load in all results. All information from results that
349 contain a document are scraped. Only results that are classified as
350 document are scraped. This way the results that are agenda items
351 in conferences are ignored. Once again only results that have con-
352 venant in the title of the file are put in the dataframe. Results that
353 are likely not covenants based on title and filename are cleaned
354 out. This is done by only selecting documents that have the word
355 covenant within the first four words of the title.

356 The website of Bestuurlijke informatie is similar to Notubiz in the
357 sense that results are only loaded into the HTML upon interaction
358 with the page. Therefore, a webdriver was once again used to load
359 in all results. The difference being that this time a new page had
360 to be clicked instead of scrolling down to the bottom. Next to that,
361 there is no download link to the files. The website makes use of a
362 download button within an iframe. To solve this, first the driver is
363 switched to the second iframe. Then the file is downloaded. Instead
364 of saving the download link, the directory path to the right file
365 is saved. Any files that seem like they are not covenants based
366 on title and filename are filtered out of the dataframe in the same
367 method as Notubiz.

368 Next to the municipalities and provinces, other potential par-
369 ties in a covenant can be the independent administrative bodies.
370 Overheid.nl provided a list of all individual governing bodies. In
371 the Netherlands there are 431 independent administrative bodies.
372 All websites were checked for covenants using keyword search or
373 the sitemap of the page.

374 The scraped covenants are then all downloaded and set into
375 the same directory. The file path is saved into the dataframe. This
376 file path is used to load in the textual data from the PDF file using
377 python library PyPDF2. This library can take in a pdf document
378 and return all text that was in the pdf file. All files that cannot be
379 read in by PyPDF2 are taken out of the dataset. These are files that
380 are scanned in and published, and therefore not processable by

381 a machine. Next to the non readable files, duplicate files are also
382 filtered out. Anything that has reasonable suspicion of not being a
383 covenant is also taken out of the dataset. This involves examining
384 filenames and removing any files that lead to suspicion of not being
385 a covenant. This is done through a regex list with abbreviations
386 for entries like 'rv', which stands for council meeting.

387 3.2 Metadata scraping

388 From the page where a covenant was published the publication
389 date, description and the title are scraped in the same method as
390 the download link of the page was scraped. This data is saved into
391 a dataset together with the path to the relevant document. Figure 1
392 gives an example of how the metadata is published in the HTML of
393 the Staatscourant.

```
394 <div>
  <a href="stcrt-2024-19147.html" class="result--subtitle">
    Covenant: Blended Finance, </a>
  </p>
  <div class="d1 d1--publication"> <div>
    <div>
      <dt>Datum publicatie</dt>
      <dd>13-06-2024</dd>
    </div>
    <div>
      <dt>Jaargang en nummer</dt>
      <dd>Staatscourant 2024, 19147</dd>
    </div>
    <div>
      <dt>Organisatie</dt>
      <dd>Ministerie van Economische Zaken en Klimaat</dd>
    </div>
  </div>
</div>
```

395 **Figure 1: Example of metadata publication of Officielebek-
396 endmakingen.nl**

397 3.3 Metadata extraction

398 After the dataset is obtained the metadata can be gathered from
399 inside the documents themselves using ChatGPT-3.5. The large
400 language model will be used to gather the following information.

- 401 • Description - small description of the covenant
- 402 • Topic - the topic of the project
- 403 • Signing date - the date the document was signed
- 404 • Starting date - the date the decisions made in the document
405 start
- 406 • Parties - the involved parties in the document.
- 407 • Covenant - Whether the document is a covenant or not

408 The Python script utilizes the OpenAI API to generate descrip-
409 tions for each row of a dataframe. For each metadata item a different
410 prompt is used. The data is stored into a json file. After execution
411 of the prompt the json file is extracted into the dataset with a new
412 column for all gathered data.

413 *You are a model that performs six tasks:*

- 414 (1) *Provide a small two to three sentence description in Dutch about the full covenant.*
- 415 (2) *Classify the topic of the covenant into one of the following categories: Environment, Housing, Trans-
416 portation, Healthcare, Education, Economic develop-
417 ment, Public Safety, Energy, Social Services, Agricul-
418 ture, Technology and Innovation.*

419 (3) Extract the signing date of the covenant format dd-
 420 mm-yyyy. If it is unfindable, return None.
 421 (4) Extract the starting date of the covenant in the for-
 422 mat dd-mm-yyyy. If it is unfindable, return None.
 423 (5) Extract all the involved organisations that have signed
 424 the covenant.
 425 (6) Classify whether this is a covenant or not (True or
 426 False). A covenant is an agreement by the govern-
 427 ment with one or more parties, aimed at achieving
 428 certain (policy) goals. A covenant includes written
 429 agreements on (the delivery of performance).
 430 Your output should be a JSON object with six keys:
 431 'description' (the short description), 'topic' (the classified
 432 topic), 'signingdate' (the signing date), 'startingdate'
 433 (the starting date), 'parties' (a list of involved parties),
 434 and 'convenant' (classification).

435 For the validation of the method there the generated information
 436 will be tested for Precision, recall and F1Score. For the involved
 437 parties a list will be composed manually for a subset of the data to
 438 check whether the information generated is correct. Next to that
 439 the Spacy NER algorithm is used to compare the effectiveness of the
 440 large language model. Only exact matches of parties are counted
 441 as correct classifications.

442 The publish date and description can be evaluated against exist-
 443 ing descriptions and dates that are scraped from the web. A subset
 444 of the descriptions will be evaluated after creation. The topic of the
 445 model is hand labeled and evaluated against the chatgpt outcome.

4 RESULTS

4.1 Covenant scraping

448 A total of 3011 documents were scraped from 302 organisations.
 449 Some organisations published in multiple locations. The total amount
 450 of distinct organisations lies around 250. Table 1 displays the distri-
 451 bution of covenants per source.

Source	Organisations	Amount
Officiele bekendmakingen	49	1119
Rijksoverheid	12	184
Belastingdienst	1	42
Notubiz	115	1011
Bestuurlijke Informatie	112	617
Manual	13	38
Total	302	3011

Table 1: Total Number of Covenants Scrapped per Source

452 The website of Officiele bekendmakingen resulted in 1137 docu-
 453 ments when filtering on covenants. A total of 49 different govern-
 454 mental organisations published on this website, mostly consisting
 455 of ministries and some municipalities and independant governing
 456 bodies. After scraping and cleaning all non-readable documents
 457 1119 covenants were added to the dataset.

458 Searching for covenant on the advanced search of Rijksover-
 459 heid.nl generates 166 results. After the cleaning process, 151 docu-
 460 ments were saved as covenants in the dataset. The keyword search
 461 generated 547 results. Scraping all items that have covenant in
 462 the file title left over 33 documents. When these files are compared
 463 to the files in the advanced search, seventeen files were in both
 464 datasets, meaning that another sixteen files were not yet found
 465 using the advanced search. Upon further inspection the missing
 466 files in the advanced search are due to misclassification of the docu-
 467 ments. The documents are in the advanced search, but classified as
 468 reports or publications and not as covenants. The scraper for the
 469 website of the Belastingdienst resulted into another 47 covenants.

470 A total of 115 municipalities and provinces had an existing No-
 471 tubiz with covenants on them. From these websites a total of 968
 472 covenants were scraped. 43 of these covenants came from the
 473 provinces. The biggest provider being Zuid-Holland with 31 con-
 474 venants. Then Gelderland with 8, Flevoland with 3 and Friesland
 475 with 1. Zeeland did not provide any covenants on its website after
 476 cleaning. 925 covenants came from the municipalities. The biggest
 477 provider of the these is Amsterdam with 98 covenanten. There
 478 are a total of 29 municipalities that only contibute one covenant.

479 The organisations that use Bestuurlijke informatie yielded a total
 480 of 612 covenants divided over 112 different organisations. The
 481 biggest provider being Hilversum with 38 covenants.

482 82% of provinces and municipalities had a findable Notubiz/Besteu-
 483 urlijke. The only provinces that miss a platform are Drenthe and
 484 Friesland. For both provinces there is no link to covenanten in the
 485 WOO-index. This would suggest that there are no covenants for
 486 the provinces. In most cases of municipalities the same situation as
 487 the provinces is true.

488 For the independant administrative bodies all locations in the
 489 WOO-index were checked. All organisations did not provide enough
 490 results to build a seperate scraper. Of the 431 websites searched
 491 only 12 resulted in actual covenants, leading to a total 38 extra
 492 covenants.

493 A sample set of 156 documents was taken to evaluate how many
 494 of the documents were actually covenants. Seventeen of these
 495 documents were not actually covenants, resulting in an accuracy
 496 of 89%. Further analysis of the non covenants scraped leads to the
 497 conclusion that in most cases, there was no reasonable suspicion
 498 that these files were not covenants. There is nothing in title or
 499 filename that might suggest that these files are not covenants.
 500 Examples of these files are titled "Convenant Centrale Toegang",
 501 "Samenwerkingsconvenant lokale alliantie voorkomen en aanpak
 502 financieel misbruik", which are diplomatic notes. Or "Convenant milieuzone lichte bedrijfsauto's" and "Convenant verzekering" which
 503 are both letters from the board of directors of a municipality.

4.2 Metadata extraction

506 Table 2 gives an overview of how much metadata is published with
 507 the documents depending on the different platform. The different
 508 platforms very in the amount of metadata published with ducu-
 509 ments. The smaller organisations publish metadata overall less
 510 structured than the bigger organisations

511 On the website of Officielebekendmakingen it is possible to filter
 512 on covenants. The documents come with a title, publishdate and

	Covenant classification	Title	Topic	Description	Publish date	Involved parties
Officieelbekendmakingen	●	●			●	○
Rijksoverheid	●	●	●	●	●	○
Belastingdienst	●		●			○
Notubiz	○		○	●		
Bestuurlijke informatie	○		○	●		
Manual	○		○	●		

Table 2: Metadata Publication per source

Note: In this table, ● denotes true for all cases, while ○ indicates the item exists in some cases but not universally.

513 the responsible party for the covenant. Other involved parties in
 514 the document cannot be seen in the metadata. A description and
 515 topic is completely missing from the publication.

516 Rijksoverheid.nl is the best performing website on metadata. The
 517 documents of the Rijksoverheid are often neatly published with
 518 large amounts of metadata. First of all, there are no covenants that
 519 come without a small description of the content. All covenants
 520 have a meaningful title assigned to them. 100% documents come
 521 with a publication date and at least one responsible organ. This
 522 organ does however not go beyond the ministries, so it is missing
 523 other external parties. Finally, all documents contain one or more
 524 subjects, making it possible to find other documents related to this
 525 covenant.

526 Covenants published on the website of the Belastingdienst al-
 527 ways have a small description. The junction of the Ministry of
 528 finance is the only scraped website that does not provide a date of
 529 publication. The title of the document is always "covenant" and
 530 then the involved party in the document. This gives little expan-
 531 nation on what the covenant is about, but does give information on
 532 the involved parties.

533 The results from Notubiz are published with a small amount of
 534 metadata. All documents do get a publish date with them. Next
 535 to the date there is a link to the conference the covenant was
 536 discussed. 90% of covenants do come with a small amount of text,
 537 but this is not a description of the content. The text given with the
 538 document is a small snippet of the text in the document.

539 The documents from Bestuurlijk Informatie come with a title,
 540 publishdate and source. None of the documents have a description
 541 or a subject of the document. Documents published on Bestuurlijke
 542 informatie do come with the option for classifying documents.
 543 However the problem here is that there is no option to classify as
 544 covenant.

545 The covenants that were manually scraped from websites differ
 546 in the amount of metadata given. The publication for smaller or-
 547 ganisations was less structured, but often had a lot of information
 548 for each document. In no cases of the manually scraped documents
 549 was there a classification of covenants

554 not. 156 documents were manually evaluated on whether they are
 555 covenants or not. Of the 156 documents evaluated 17 were not
 556 actually covenants. The model was able to correctly identify one
 557 of these seventeen. Leading to a recall score of 0.06. Since the model
 558 did not predict any covenants as non-covenants the precision
 559 is 1. The combined F1 score for the classification of covenants by
 560 gpt-3.5-turbo is 0.11.

	Precision	Recall	F1 Score
Classifying covenants	1.00	0.06	0.11

Table 3: Performance Metrics of the GPT Model for Classify-
 ing Covenants

561 **4.2.2 Party extraction.** To validate the extraction of parties from
 562 covenants, the same validation set was used, excluding all non-
 563 covenants. This left a dataset of 139 actual covenants. Within
 564 these covenants there were a total 828 parties to extract. Gpt-3.5-
 565 turbo was able to correctly extract 750 of these, making 78 false
 566 classifications. This results in a precision score of 0.91, a recall of
 567 0.77 and a F1 score of 0.83. When looking at the results at covenants
 568 level, the model made no mistakes or misses in 64% of covenants.
 569 Meaning more than two in three of covenants are extracted fully
 570 correct. After doing an in depth analysis of the mistakes made by
 571 the model, two main error causes are identified. First of all, Gpt-
 572 3.5-turbo has a token intake limit of 4096, meaning it can only take
 573 in the first 4096 characters. In larger covenants this means that
 574 the section of involved parties is missing, meaning all involved
 575 parties in the document are able to be read in by the model. The
 576 second common mistake is merging multiple parties into the same
 577 instance. When a covenant has a large number of similar parties
 578 the model will merge them into one entity. For example, merging all
 579 twelve provinces into 'Deputies of different provinces'. Appendix 1
 580 displays an example of what can be done with having covenants
 581 that structurally contain all involved metadata with the covenants.

582
 583 The model is compared to Spacy's named entity recognition
 584 model (nl_core_news_lg). This model was able to identify 384 par-
 585 ties correctly, with 4047 false classifications. Resulting into a pre-
 586 cision of 0.09, a recall of 0.44 and an F1 of 0.14. The Spacy model
 587 made a lot of mistakes due to the combination of lack of domain

	Precision	Recall	F1
GPT	0.91	0.77	0.83
SPC	0.09	0.44	0.14

Table 4: Performance metrics for GPT and SPC on party extraction

knowledge and unstructured text. While reading in the text using PyPDF2, a lot of spaces, whitelines and structure got lost. For the model lead to a lot of mistakes like: “deArbeidsomstandigedenwet”, “deelconvenant” and “geheleconvenantperiode”. These spacing mistakes were seen by the model as organisations.

4.2.3 Date Extraction. Gpt-3.5-turbo was able to generate 1281 values for signing dates. Of these 1281 values, only ten were actual dates containing a day, month and year. The rest of the values were just months or just a day and month. This does not give much information about the possible duration or relevance of the covenant. The main cause of the model not generating dates based on the documents is because they are not within the first 4096 characters of the document. In many convenants the signing date is at the end of the document or not in the document at all. To test this a sample set was created and tested for the date giving the model the last 4096 characters of the covenant. Two hundred convenants were tested on giving the last 4096 characters of the document. In this case the model performed better, but was still only able to generate a signing date in 18.5% of convenants in the format dd-mm-yyyy. When validating the correctness of these generated dates only 21 of these were correct, meaning that in just 10.5% of cases the model was able to generate the correct signing date.

When analyzing the mistakes the model made it becomes clear that the model has trouble with the signing date because it is often not there. For many scraped documents the signing date is left to be hand-written like in the image below.

Figure 2: Example of how the signing date is left open to be filled in by hand.

In other cases the model had trouble with deciding with what the signing date is, since in many cases no context is given to the signing date. The model then chooses another date in the file that has context. The starting date extraction of the covenant generated 1991 results. Of these results, 1550 were actual dates in the dd-mm-yyyy format. When doing the validation on the documents, almost none of them returned the correct starting date. The overall accuracy of the model came out to about 1%.

4.2.4 Description & topic modeling. The description created by the model resulted in an accuracy score of 86%. The descriptions given by the model were often based on the first sentences of the document. The most common mistake of the model is being too short in its description, forming more of a title than an actual description. The descriptions were most clear when there was a small section dedicated to what the covenant was about in the beginning of the document. Even when documents contain a long list of involved parties, and therefore much of the input data is taken up by the parties, the model is able to provide an adequate description on what the document is about.

Metric	Accuracy
Description	0.86
Topic	0.91

Table 5: Accuracy of Description and Topic Classification

For topic modeling, out of 139 topics classified, 126 were correctly identified, resulting in an accuracy of 91%. Most errors occurred with documents whose subjects did not clearly fit into any predefined categories. In some cases the model would make up a new category. All topics have a large amount of convenants classified to them. The most common topic classified by is the model is education with 361 documents assigned to it. The least common category is housing with 192 convenants.

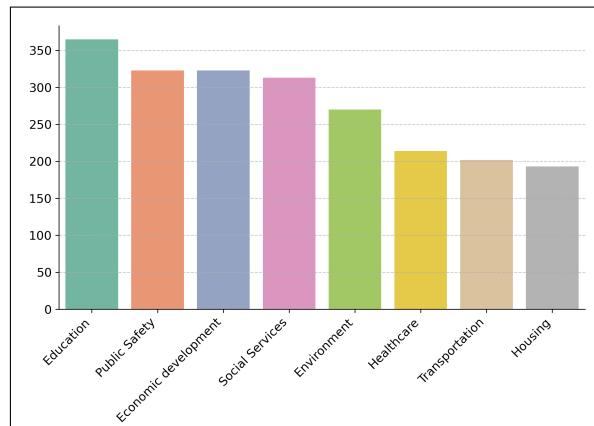


Figure 3: Amount of topics classified per category

5 DISCUSSION

Scraping convenants from the internet is challenging because many websites do not classify these documents by type. For the website of Rijksoverheid and officiëlebekendmakeingen there is such classification. Still, for these website there are errors being made marking documents as convenants that are not and vice versa. By classifying the document type, convenants and such become a lot more findable.

The websites that contain a large number of convenants are structurally scraped in this research. But there are still a lot of

651 websites that contain just one or two covenants. Building a scraper
652 for each of these websites is not sustainable.

653 Publishing documents with metadata also makes them more
654 findable and interoperable. For the website of the Rijksoverheid this
655 goes well. The documents are all published on their own page and
656 have a topic and responsible party for the document. The topic and
657 party is clickable, which links to more information on the entity.
658 The other websites can still improve a lot on this.

659 The websites that contain a large number of covenants are
660 structurally scraped in this research. But there are still a lot of
661 websites that contain just one or two covenants. building a scraper
662 for each of these websites is not sustainable.

663 No real estimate of how many covenants exist on the internet
664 can be made after this research yet. Manually scraping the internet
665 a lot of websites with just a handful of covenants can be found.
666 As an example, the website of the police has a url where each
667 unit can publish their covenants (<https://www.politie.nl/wet-open-overheid/convenanten>). However on this URL just one covenant
668 is published by the National Expertise and Operations Unit. When
669 looking at the dataset collected there are a lot more covenants
670 published by the police that are not on this website. The covenants
671 are scattered through the web too unstructured to make a real
672 estimate of how many there actually are.

673 Some aspects of metadata can be successfully extracted by GPT-
674 3.5, but can not give a guarantee of structurally extracting all data.
675 The biggest limitation of the model is its inability to read over 4096
676 characters. Since covenants are in many cases far over this amount
677 of characters. The model cannot return the correct data when the
678 input does not provide the complete picture. Since the covenants
679 are in many cases structured in such a way where the parties are
680 the first thing mentioned in the document these are often extracted
681 successfully. The beginning of the document gives enough context
682 for a description and topic to be successfully generated. Yet, when
683 it comes to extraction of a specific date the documents are often too
684 large to find the right date. The input maximum of 4096 characters
685 is fixed and cannot be increased. Next to that, even if the correct
686 date is given within the input characters, the covenants often lack
687 context regarding the dates. The model will often take a random
688 date that is found in the document since there is no clear context
689 on what is the correct date. Regardless of the problems with the
690 maximum input characters and lack of context, the model does
691 show a lot of potential. No extra training data is required for the
692 model to run successfully. As long as the input data is structured
693 and contains all required information it can retain information very
694 effectively. The model outperforms Spacy's most comprehensive
695 Dutch language model in party extraction F1 score by 492.86%. This
696 difference is mainly due to Spacy making a lot of mistakes. Likely,
697 these mistakes are because of the model lacking domain knowledge
698 on specific smaller organizations.

699 Similar research by Huang et al., analyzed the potential of GPT-
700 3.5 on extracting structured data on clinical notes. The research
701 concluded that the model is very capable of performing the task,
702 scoring an overall accuracy of 89%. With the party extraction and
703 topic- and description modeling this research showed similar sta-
704 tistics. The flaws of the model in this research are overlapping with
705 the flaws in this research. Huang et. al concluded that most mistakes
706 made by the model are due its ability to infer from logical reasoning.

707 In this research this can be seen in the date extraction. The model
708 is not able to infer that a standalone date on top or bottom of the
709 page is the date of signing and will therefore choose another date.

710 This research has mostly focussed on the scraping and extraction
711 of covenants published by the central government and provinces
712 and municipalities. Some independent administrative bodies have
713 been manually scrapped, but in many cases the covenants of these
714 bodies were not on the website provided by Overheid.nl. Future re-
715 search may look further into how the smaller governmental bodies
716 are publishing their documents and if there are actual patterns in
717 their publishing that were not found in this research.

719 6 CONCLUSION

720 The Dutch Government Openness Act (WOO) requires governmen-
721 tal bodies to publish their documents in a findable manner. A great
722 way to improve findability of documents is publishing them with
723 metadata. This research has looked into how many covenants
724 are published by Dutch governmental organizations in accordance
725 with the WOO, and with how much metadata they come with. Next
726 to that the ability to gather the metadata afterwards using GPT-3.5
727 is tested.

728 Covenants of 302 different organisations have been scraped,
729 resulting in a dataset of 3011 documents. A large problem in the
730 publication of covenants is not classifying them, in some cases
731 making everything seem like it is a covenant. Next to that, the
732 scatteredness of the covenants on the internet makes it impossible
733 to find them all. There are too many websites that contain just one
734 or two covenants to be able to find them all. These two factors
735 combined make it impossible to get an actual number on the amount
736 of covenants that are published.

737 The publication of metadata with the covenants can be im-
738 proved on many fronts. The ministries of the central government
739 publish their documents with a lot of metadata already. Smaller gov-
740 ernmental bodies like local governments and independent adminis-
741 trative bodies can still improve in the publication of descriptions,
742 topics and in some cases even the correct title of the document.

743 GPT-3.5's ability to classify covenants was tested on the dataset,
744 resulting in a F1 score 0.11. In most cases the model is not able to
745 classify non-covenants as such. The GPT-3.5 model generally per-
746 forms well on extracting parties from the document. The model
747 produced an F1 score of 0.81 outperforming without any extra
748 domain training required. The model far outperformed the most
749 advanced Dutch Spacy model, which only scored an F1 of 0.14.
750 Extraction of dates resulted in an accuracy of .11. This huge dif-
751 ference is mainly due to the lack of context that covenants often
752 give to dates, and the models inability to take in more than 4096
753 characters. This makes GPT-3.5 less viable for extraction of dates
754 in covenants. Finally, when modeling a topic or description to a
755 covenant the model resulted in an accuracy of 0.91 and 0.86 respec-
756 tively. In conclusion, the Dutch government needs to improve the
757 findability of covenants published by governmental organizations.
758 While GPT-3.5 showed potential in extracting parties, topics, and
759 descriptions from covenants, its inability to handle dates and lack
760 of accuracy in covenant classification limit its usefulness in this
761 specific task.

762 REFERENCES

763 [1] [n. d.]. spaCy 101: Everything you need to know. <https://spacy.io/usage/spacy-101>.
764 Accessed: 2024-02-23.

765 [2] [n. d.]. Wijze van openbaar maken Woo-informatiecategorie 'Convenan-
766 ten'. <https://www.open-overheid.nl/instrumenten-en-diensten/richtlijnen/2024/2/16/hulpmiddel-convenanten>. Accessed: 2024-06-26.

767 [3] [n. d.]. Woo-index. <https://organisaties.overheid.nl/woo>. Accessed: 2024-06-26.

768 [4] 2022. A framework for domain-specific distant supervised named entity recogni-
769 tion. *Proceedings of WCSE 2022 Spring Event: 2022 9th International Conference
770 on Industrial Engineering and Applications* (2022). <https://doi.org/10.18178/wcse.2022.04.003>

771 [5] J. Chiu and E. Nichols. 2016. Named entity recognition with bidirectional lstm-
772 cnns. *Transactions of the Association for Computational Linguistics* 4 (2016),
773 357–370. https://doi.org/10.1162/tacl_a_00104

774 [6] Robert Dale. 2021. GPT-3: What's it good for? *Natural Language Engineering* 27,
775 1 (2021), 113–118. <https://doi.org/10.1017/S1351324920000601>

776 [7] Hui Han, C.L. Giles, E. Manavoglu, Hongyuan Zha, Zhenyue Zhang, and E.A. Fox.
777 2003. Automatic document metadata extraction using support vector machines.
778 In *2003 Joint Conference on Digital Libraries, 2003. Proceedings*. 37–48. <https://doi.org/10.1109/JCDL.2003.1204842>

779 [8] Jingwei Huang, Donghan M. Yang, Ruichen Rong, and et al. 2024. A critical
780 assessment of using ChatGPT for extracting structured data from clinical notes.
781 *npj Digital Medicine* 7 (2024). <https://doi.org/10.1038/s41746-024-01079-8>

782 [9] Pooja Kherwa and Poonam Bansal. 2019. Topic modeling: a comprehensive
783 review. *EAI Endorsed transactions on scalable information systems* 7, 24 (2019).

784 [10] G. Lample, M. Ballesteros, S. Subramanian, K. Kawakami, and C. Dyer. 2016. Neu-
785 ral architectures for named entity recognition. *Proceedings of the 2016 Conference
786 of the North American Chapter of the Association for Computational Linguistics:
787 Human Langua* (2016). <https://doi.org/10.18653/v1/n16-1030>

788 [11] Leonard Richardson and Matthew L. Ward. [n. d.]. Beautiful Soup Documentation.
789 <https://pypi.org/project/beautifulsoup4/>. Accessed: 2024-06-07.

790 [12] Brady D Lund and Ting Wang. 2023. Chatting about ChatGPT: how may AI and
791 GPT impact academia and libraries? *Library hi tech news* 40, 3 (2023), 26–29.

792 [13] M. Aalbersberg I. J. Appleton G. Axton M. Baak A. ... Mons B. M. D., Dumontier.
793 2016. The fair guiding principles for scientific data management and stewardship.
794 *Scientific Data* (2016).

795 [14] Jaap Kamps Maarten Marx. 2023. Digitaal duurzaam publiceren van Woo-dossiers.
796 *Archievenblad* (2023).

797 [15] Jaap Kamps Maarten Marx, Joep Meindertsma. 2023. Maak hergebruik van
798 Woo-informatie nu echt mogelijk. *od-online* (2023).

799 [16] Maarten Marx. 2024. Onderzoeksrapport naar de digitale toegankelijkheid van
800 documenten die de overheid publiceert onder de Woo. *Adviescollege Openbaarheid
801 en informatiehuishouding* (2024).

802 [17] Yuhong Mo, Hao Qin, Yushan Dong, Ziyi Zhu, and Zhenglin Li. 2024. Large
803 language model (llm) ai text generation detection based on transformer deep
804 learning algorithm. *arXiv preprint arXiv:2405.06652* (2024).

805 [18] J. Qin, A. Leathers, and V. T. Tompkins. 2020. Linking mechanisms in data
806 repositories: a case study of biosample database. *Proceedings of the Association
807 for Information Science and Technology* 57 (2020). Issue 1. <https://doi.org/10.1002/pra2.365>

808 [19] Algemene Rekenkamer. 1995. Convenanten van het Rijk met bedrijven en in-
809 stellingen. *Tweede Kamer* 1996, 24 (1995), 480.

810 [20] Rijksoverheid. 2024. Hoofdlijnen Wet open overheid. <https://www.rijksoverheid.nl/onderwerpen/wet-open-overheid-woo/hoofdlijnen-woo>.

811 [21] Selenium Project. 2024. WebDriver. <https://www.selenium.dev/documentation/webdriver> Last accessed: June 10, 2024.

812 [22] Kenniscentrum voor beleid en regelgeving. 2022. Aanwijzingen voor convenan-
813 ten.

Appendix A FIRST APPENDIX

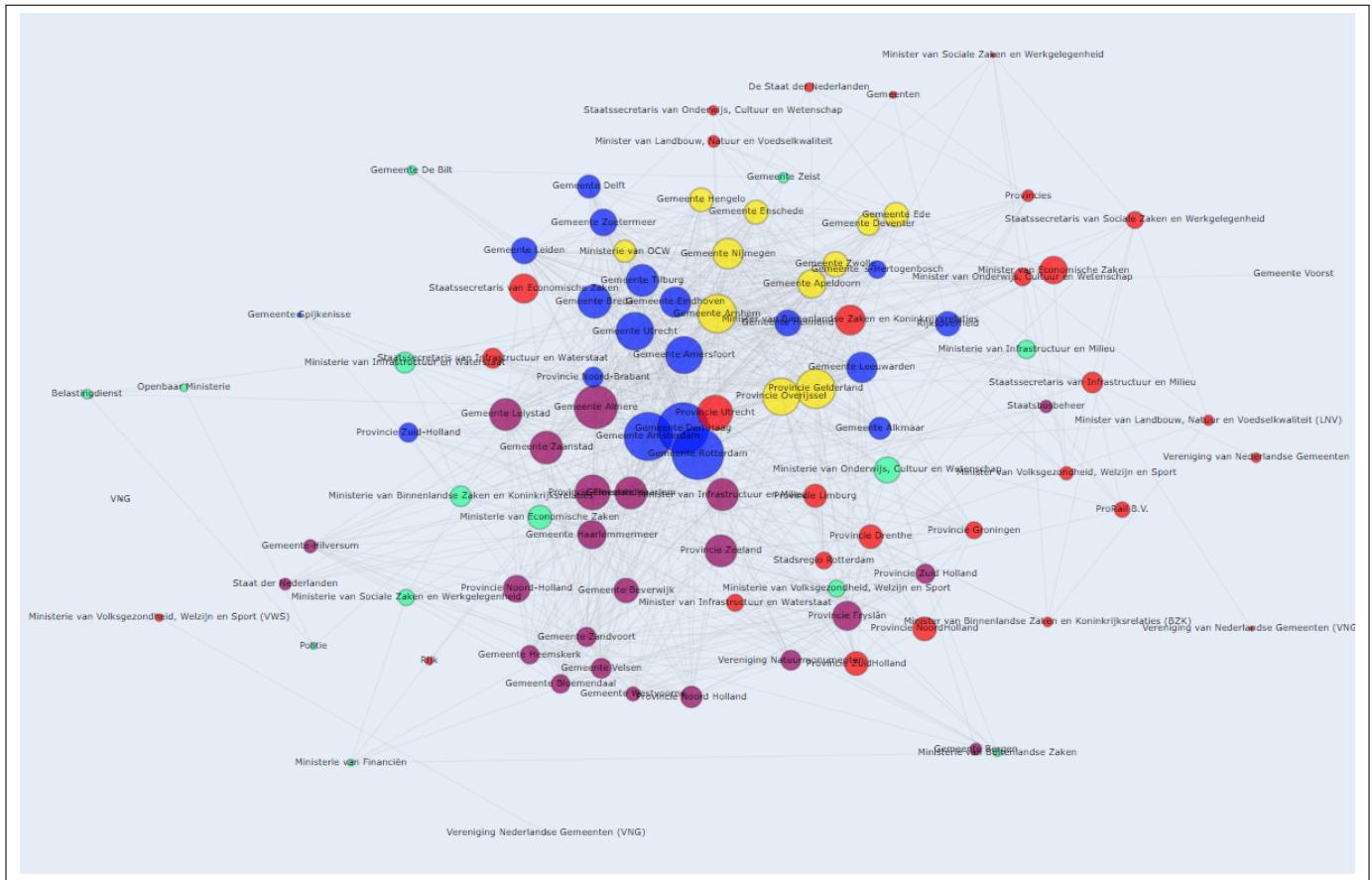


Figure 4: Clustering graph of top 100 involved parties in covenants. Each node is an organisation. The size of each node is increased with each covenant they are a part of. Each edge is a cooperation in a covenant. The colors are clusters of nodes that often work together.