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Abstract

The accessibility of governmental discussion meetings is fundamental to a healthy democ-
racy, yet current methods for retrieving information from video archives, particularly those of
democratically elected councils, are inefficient and time-consuming. This research addresses 5

this issue by leveraging AI to enhance information retrievability from large video archives.
By employing state-of-the-art video and audio analysis tools, including a custom Whisper
ASR and pyannote.audio speaker diarisation pipeline, videos are transcribed, diarised, and
embedded into a Weaviate vector database. Archived meetings can subsequently be queried
in three different ways: a semantic-based approach utilizing nearest-vector search, a lexical 10

approach employing BM25 ranked keyword search, and a hybrid approach that permits a
custom weighted combination of both semantic and lexical search techniques. These tools
significantly improve searchability, as evidenced by the developed system’s quicker retrieval
times. On top of this, the integration of a chat bot system with access to the Weaviate
database offers a conversational interface for querying specific meetings. Overall, this re- 15

search contributes to enhancing transparency and accessibility in governmental proceedings
through AI-driven advancements in information retrieval from video archives.
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CHAPTER 1

Introduction

One of the foundations of a strong democracy is transparency. Citizens must have the opportunity 55

to be informed about- and control the inner workings and decision making process of their (local)
governments. To help improve government transparency, Dutch lawmakers introduced the ’Wet
Open Overheid’ (Woo) 1 in 2022. This law is applicable to all governmental bodies, from the
house of representatives to local municipalities to the tax authority. The three most important
terms the Woo brings are: active publication, stating government bodies should actively publish 60

some types of information. Publication on request states that information should be made public
on request. Lastly, the information management obligation states that all this information should
be easily accessible.

Various online tools such as the official Woo-index 2 and Woogle 3 offer the ability to search
through a wide range of uploaded documents and information. Though millions of documents 65

are already published and searchable, the searchability of one important type of information
is lacking; the meetings. Decisions, from large to small, are made during long meetings which
are livestreamed and archived. These video archives, often three to four hours long, not only
require vast amounts of storage, they are also difficult to comb through. For large institutions,
manually transcribing meetings and hosting a naive search engine might not be a problem. For 70

the hundreds of small local municipalities however, this is just not feasible in terms of costs and
required manpower.

Imagine a journalist writing an article about a new piece of legislation that was, among
other things, debated the night before by the local municipality. They want to write what the
different parties think of the bill and how they voted. Currently, they would have to watch or 75

skip through to video until they find the part where they talk about the proposed law. Then,
they would have to watch the debate and take notes on what each Representative argued, along
with their arguments. Understandably, this simple sounding process quickly becomes both time
consuming and inefficient.

80

This research provides a solution to this issue by answering the question how can AI be utilized in
order to increase information retrievability of large video archives, in particular of democratically
elected councils? In order to land at a satisfying answer to this research question, some related
questions need to be answered first. First, the video archives need to be obtained. This means
that the first part of this research will be finding an answer to the question what are the different 85

archive formats local authorities host in order to comply with the Woo and how are these formats
exploited to retrieve as much information as possible? To extract as much relevant informa-
tion from the video archives, the question what state-of-the-art video- and audio analysis tools
can be used to improve searchability of the meetings, and how accurate are these in the given
circumstances? needs to be answered. During the aforementioned hour long meetings, many 90

different subjects are discussed. By answering the question how accurately can such a video be

1https://wetten.overheid.nl/BWBR0045754
2https://organisaties.overheid.nl/woo
3https://woogle.wooverheid.nl
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segmented into the meaningfully different parts which are discussed?, this fact can be used to
provide a better overview of the video, as well as enhancing searchability. Finally, an answer
to the question what state-of-the-art information retrieval techniques can be leveraged to develop
an efficient video information retrieval system? should be found, tying everything together. On95

top of these base questions, the last part of this research regards an integration of the search
system with a large language model, answering the final sub question how well can the developed
search system be integrated with a large language model, creating a helpful chat bot capable of
answering questions and providing complementary information when needed? Building such a
chat bot allows for an even quicker answer to questions, without the need to even search for the100

answer yourself.

In summary, the research questions this thesis aims to answer are:

1. What are the different archive formats local authorities host in order to comply with the
Woo and how are these formats exploited to retrieve as much information as possible?105

2. What state-of-the-art video- and audio analysis tools can be used to improve searchability
of the meetings, and how accurate are these in the given circumstances?

3. How accurately can such a video be segmented into the meaningfully different parts which
are discussed?

4. What state-of-the-art information retrieval techniques can be leveraged to develop an effi-110

cient video information retrieval system?

5. How well can the developed search system be integrated with a large language model,
creating a helpful chat bot capable of answering questions and providing complementary
information when needed?

115

Together, these sub-research questions can be used to answer the main research question:

6. How can AI be utilized in order to increase information retrievability of large video archives,
in particular of democratically elected councils?

8



CHAPTER 2

Related work 120

The practice of archiving and transcribing parliamentary meetings is nothing new. Major govern-
mental organisations such as the European Parliament 1 and the Dutch House of Representatives
2 maintain an online archive with basic search functionalities. These archives typically provide an
engaging user experience by displaying the current speaker and their spoken content. However,
the identification of the active speaker often relies on the microphone in use and its assignee, 125

which can lead to inaccuracies when the speaker uses a different microphone than assigned.
Despite the presence of these archives, the search capabilities are often rudimentary, limited
to basic keyword searches akin to a simple control+f functionality, or in some cases, no search
functionality is provided at all.

In December 2021, students at the University of Washington published the Council Data 130

Project (CDP), an open source municipal data collection tool that includes both front-end and
back-end components for searching archived meeting transcripts [6]. The CDP primarily focuses
on extracting data from municipal archives and employs keyword-based probabilistic information
retrieval techniques. However, apart from automatic transcription, the CDP does not utilize
machine learning to enhance search functionality. 135

More recently, in 2023, Italian researchers at the University of Rome developed a system
leveraging transcription- and speaker diarisation AI models to process video recordings of Italian
Parliament meetings [3]. This work emphasizes the automation of creating indices but does not
offer an extensive search system for the processed video content.

Beyond governmental video archives, prior research has explored the searching of video 140

archives of online lectures. The majority of these studies typically employ a combination of
transcript generation and optical character recognition (OCR) to obtain relevant search results,
exploiting the fact that on-screen text has a higher probability of being relevant to the presently
discussed subject [1, 39]. However, this approach is not applicable to parliamentary meetings,
which generally do not feature on-screen informational text that can be exploited. 145

In summary, while existing research has individually addressed AI-based information extrac-
tion from governmental meeting archives and search tools for transcribed content, an integrated
system combining comprehensive meeting processing with AI-driven search capabilities remains
missing.

1https://www.europarl.europa.eu/plenary/nl/debates-video.html
2https://debatdirect.tweedekamer.nl/
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CHAPTER 3 150

Theoretical background

3.1 Natural Language Processing

Natural Language Processing (NLP) is the field in computer science primarily focusing on en-
abling computers to understand human language. Naturally, simply having knowledge of different
words and their meaning does not suffice for achieving this goal. A true understanding of lan- 155

guage can only be obtained by understanding grammatical rules, contextual details and potential
informal vernacular differences in texts from different areas.

Natural language processing has its historical roots roughly halfway of the previous century.
During this time, early experiments were performed trying to create computer chat bots and
to automatically translate foreign languages. From the 1950’s onwards, an approach that is 160

now called ’symbolic NLP’ was used. Symbolic NLP is similar to the way humans learn to
understand languages: using a set of handcrafted rules, structures, patterns and decision trees,
a framework for the understanding and generation of a language is created. The machine then
follows this set of rules to determine the desired output [Dale00]. One example of this symbolic
NLP approach is the ELIZA computer program, dating back to 1964. ELIZA was developed 165

by Joseph Weizenbaum at MIT. ELIZA analyzes input sentences by applying a set of generated
decomposition rules and key word detection [38] [17]. A response is then generated by a rule set
focused on mimicking Rogerian psychotherapy responses [40].

[User]: Men are all alike.

[ELIZA]: IN WHAT WAY?

[User]: They’re always bugging us about something or other.

[ELIZA]: CAN YOU THINK OF A SPECIFIC EXAMPLE?

[User]: Well, my boyfriend made me come here.

[ELIZA]: YOUR BOYFRIEND MADE YOU COME HERE?

[User]: He says I’m depressed much of the time

[ELIZA]: I AM SORRY TO HEAR YOU ARE DEPRESSED

Figure 3.1: A piece of conversation with ELIZA. [38]

With the rapid advances of computational power, the lessening of the dominance Noam
Chomsky’s linguistics theories and the greater digitisation of written texts, the 80’s brought in 170

a natural language processing revolution. The old system of rule sets and decision trees was
replaced by a new approach using statistics and machine learning. Instead of following a set
of rules, statistical NLP focuses on the identification of common patterns found within a given
corpus of language [26]. The detection of these patterns is learned from gigantic bodies of text,
called a corpus (plural: corpora). The popularization of the internet and various governments’ 175

efforts of digitisation greatly facilitated the collection of these corpora. Perhaps the best exam-
ple of an application of statistical NLP is the predecessor of all current state-of-the-art large
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Figure 3.2: A two-dimensional (t-SNE) projection of word embeddings. Adapted from [26] and
[21]

language models, the n-gram language model. The n-gram language model works by predicting
the occurrence of a word, based on the preceding n − 1 words. The probability of a word wn

occurring at the end of a sequence of words wn−N+1:n−1 is given by equation 3.1 [7, 26].180

P (wn|wn−N+1:n−1) =
C(wn−N+1:n−1wn)

C(wn−N+1:n−1)
(3.1)

Here, N is the window of text and C is the count of occurrences, as found in the corpus.
Naturally, large amounts of text need to be processed in order to form an accurate probabilistic

model. Despite being first invented in 1948 by mathematician Claude E. Shannon [36], the lack
of computational power to process these large amounts of text prevented the implementation of
the n-gram model until much later.185

For many years, the n-gram language model was the state-of-the-art algorithm in language
processing. Despite this, it had a significant problem: the curse of dimensionality. The curse of
dimensionality is the exponential growth of computational resources needed, when dimensionality
of discrete variables increases. To illustrate this, let’s say one wants to model the joint distribution
of 10 consecutive words in a language with a vocabulary V of size 100, 000. The amount of190

free parameters here would total 100, 00010 − 1 = 1050 − 1 [2]. In 2003, Youshua Bengio et al.
proposed a new method of predicting the next word given a sequence of preceding words, utilizing
a multi-layer perceptron. Instead of raw strings, it makes use of dense vector representations
of words, with semantically similar words embedded closer to each other than meaningfully
different words. The continuous nature of these word embeddings inherently do not suffer from195

the dimensionality curse, since probabilities for (unseen) word sequences are based on the learned
similarities between similar vectors. These word feature vectors and the parameters of the
probability function are learned during the processing of the training corpus [2]. This innovation
gave birth to the current most popular approach to natural language processing: neural NLP.

3.1.1 Word feature vectors200

As briefly described in the previous section, current state-of-the-art NLP techniques works with
embeddings of text. Despite being introduced in the early 2000’s, this method did was not
successful at corpora containing more than a few hundred millions unique words. In 2013,
Google introduced Word2vec, alongside a paper proposing several techniques to train and obtain
high quality word vectors, with a larger vocabulary and more accurate than before [27].205

remarkably, these vector representations contain an embedded meaning of the word. As
stated before, semantically similar words are embedded close to each other in the vector space, a
schematic, 2D representation of this phenomenon is illustrated in figure 3.2. Besides this locality,
word vectors also contain relationships to other words, as learned from the context provided by

12



the dataset. Perhaps the most famous example of this was found by one of the authors of 210

Word2vec, several years earlier [28]. This paper showed that when the vector representing ’Man’
(V (′man′)) was deducted from V (′king′), the result of which added to the vector V (′woman′),
results in a vector closest to the word ’Queen’. Later, the Word2vec paper presented several
other examples showing the capabilities of ’word vector arithmetic’, as seen in figure 3.3.

V (′copper′)− V (′Cu′) + V (′zinc′) ≈ V (′Zn′)

V (′Einstein′)− V (′scientist′) + V (′Mozart′) ≈ V (′violinist′)

V (′Japan′)− V (′sushi′) + V (′Germany′) ≈ V (′bratwurst′)

Figure 3.3: Word vector arithmetic examples (interpreted as ’zinc is to ... what copper is to
Cu’). From [27]

3.1.2 Contextual feature vectors 215

Since the end of the 2010’s, the implementation of Word2vec is not considered state-of-the-
art anymore, being replaced by BERT [10] and GPT [8]. The introduction, and consequent
improvements of the transformer model shifted the focus in NLP to the utilization of these
transformer models. Transformer models are like regular neural networks, but add several so
called ’attention layers’, allowing words to be processed in relation to all other words in the 220

sequence, taking the specific context into account [37, 29].

3.2 Information retrieval

According to current Director of the Stanford Artificial Intelligence Laboratory Christopher
Manning, information retrieval can be defined as:

Information Retrieval (IR) is finding material (usually documents) of an unstructured nature 225

(usually text) that satisfies an information need from within large collections (usually stored on
computers).[25]

This definition steps away from the historic way of searching for data using database systems.
In such systems, specific (unique) identifying information such as an order ID or document ID
is needed to find data from an information system. Perhaps the most used manifestation that 230

encapsulates this modern way of looking at IR is the Google search engine. The user enters
a query, which attempts to communicate the user’s information need. The search engine then
performs various IR algorithms and ranks results based on their relevance to the entered query.
Before the documents can be searched and ranked, they need to be pre-processed. In a process
called indexing, a universal representation for the documents is derived that the system can 235

efficiently index.
Over the years, many different approaches to IR came forward. These different strategies are

roughly categorized in three separate models: the boolean model, the probabilistic model and
the algebraic model. [11]

3.2.1 Boolean information retrieval 240

The boolean model employs a relatively simple and straightforward strategy to information
retrieval. A query consists of search terms and potentially the mathematical logical operators
AND, OR and NOT. A search term either matches a document, or it does not. Thus, search
results can not ranked be ranked like in other models.[11, 25] An example query that looks for
political documents containing the term ’China’, but not ’Japan’ could look like the following, 245

for example.

political AND contains(China) AND NOT contains(Japan)

13



Figure 3.4: Information retrieval process. From [11]

Due to the fact that boolean queries lack the ability the rank returned results, this model is
rarely used in practice. Other models that can rank results and offer the user more freedom to
construct searches are favoured in modern systems.250

3.2.2 Algebraic information retrieval

The algebraic model facilitates ranked retrieval, in which there is a collection of documents (the
corpus), the user issues a query, and a ranked list of documents relevant to the query is returned.

Assume the collection of documents has been pre-processed and indexed into many vectors.
Recall that semantically similar words and sentences lie closer in vector space than semantically255

dissimilar text. Given this fact, similar documents will naturally lie close to each other. Addi-
tionally, embedded queries that are relevant to specific documents, will be embedded relatively
close to these relevant documents, meaning the measure of similarity between two vectors can
function as a ranking score.

The two most popular ranking functions are Euclidean distance and cosine similarity. Eu-260

clidean distance is a widely used metric in clustering problems, measuring the distance between
two points in space. Equation 3.2 gives the general formula for calculating the euclidean distance
between two vectors V and W of dimension n. [13]

D(V,W) =

√√√√ n∑
i=1

(Vi −Wi)2 (3.2)

Cosine similarity, given in in equation 3.3, is more popular in textual document information
retrieval systems. It is not a metric of distance, but how similar two vector represented documents265

are. Similarity here, is seen as the angle between two vectors. Thus, unlike Euclidean distance,
the difference in magnitude of two vectors has no influence on the metric. [13, 31, 25]

S(V,W) =
V ·W
|V| × |W|

(3.3)

Now, with a means of ranking documents based on a user’s query, a search through the corpus
is possible. However, the computational complexity to perform a search through all documents
scales linearly with the documents. This means that large corpora will quickly become infeasible270

to query [23].

14



3.2.3 Probabilistic information retrieval

Another model facilitating ranked retrieval is the probabilistic model. Central to this model lies
the Probability Ranking Principle (PRP):

If a reference retrieval system’s response to each request is a ranking of the documents in the 275

collection in order of decreasing probability of relevance to the user who submitted the request,
where the prob- abilities are estimated as accurately as possible on the basis of what- ever data
have been made available to the system for this purpose, the overall effectiveness of the system
to its user will be the best that is obtainable on the basis of those data. [33]

The main challenge of probabilistic information retrieval, is finding a ranking function that 280

efficiently provides an accurate ranking of documents in a collection.
Central to most probabilistic information retrieval approaches, is the Binary Independence

Model. It assumes that a term qi in a document is either present (1), or absent (0). With this
assumption, a search term weight can be computed. While many different weight equations exist,
the Inverse Document Frequency (IDF) (equation 3.4) is used most often. Here, N is the total 285

number of documents, while n(qi) is the number of documents containing search term qi [32].

IDF (qi) = ln
N − n(qi) + 0.5

n(qi) + 0.5
+ 1 (3.4)

Okapi BM25

Okapi BM25, often referred to simply as BM25, is a high performing ranking function ranking
documents based on their relevance to a given search query, dating back to the 70s. It builds
upon the Binary Independence Model and incorporates various refinements, allowing for cheap 290

and accurate document scoring. BM25’s ranking function (equation 3.5) scores each document in
a collection for a query by taking into account the frequency of query terms within the document
and the document’s length [32, 25].

score(D,Q) =

n∑
i=1

IDF (qi) ·
f(qi, D) · (k1 + 1)

f(qi, D) + k1 · (1− b + b · (|D| /avgdl)
(3.5)

Here, D and Q are the document and query containing q1, ..., qn respectfully. f(qi, D) is the
frequency of a term qi in document D. |D| is the document length, and avgdl is the average 295

document length in the collection. IDF (qi) is the inverse document frequency weight of search
term qi. Lastly, k1 and b are parameters, usually set to 1.2 and 0.75 respectfully.

Due to the simplicity and effectiveness BM25 brings, it is still widely used in digital libraries,
search engines and other information retrieval systems [32].

3.2.4 Vector databases 300

Vector databases are a relatively new technology that offer a storage and retrieval mechanism
optimized for enormous amounts of data, often capable of querying hundreds of millions of
documents with only milliseconds latency. These remarkable results are achieved by the use of
approximate nearest neighbor (ANN) algorithms, offering some accuracy for for a large speed
gain [12]. 305

Hierarchical Navigable Small World graphs

One of the most employed ANN algorithms is Hierarchical Navigable Small World graphs (HNSW)
[23]. This proximity graph based algorithm works on multi-layered graphs, where deeper lay-
ers contain more data points and where the deepest layer contains every data point. At query
time, the algorithm efficiently navigates these layers to find the approximate nearest neighbors. 310

The process begins at the highest layer, containing fewer data points. In this layer, the closest
matching data points are found, after which the nearest neighbors in the layer below are found.
This process repeats until the nearest neighbors in the deepest layer have been found. Since
there are relatively few data points in the higher layers, many unrelated data points will never
be processed, resulting in a quick and efficient search [24]. 315

15



Figure 3.5: A simple Hierarchical Navigable Small World vector search diagram. At each layer,
the closest data point is found, resulting in a final best match in the deepest layer.

Hybrid search

Generally speaking, dense vector search specialises in the semantic meaning of the search terms,
while a keyword search such as BM25 focuses on the search terms themselves and their rela-
tive frequency. Many vector databases allow for a combination between such vector similarity
searches and probabilistic searches, resulting in a hybrid search taking in to account both keyword320

frequency and semantic meaning.

3.3 Video & audio analysis

Before any of the aforementioned processing and retrieval can be performed, the video must be
analysed and pre-processed. As deduced from the stated research questions, the main analysis
and processing that is mandatory is transcription, with the use of automatic speech recognition325

tools, speaker detection, which is done with speaker diarisation models and topic segmentation
with the use of large language models.

3.3.1 Automatic Speech Recognition

Automatic Speech Recognition (ASR), informally known as Speech To Text (STT), is the act of
transforming spoken language into written text by a computer. ASR has been an old problem,330

going through many different stages and bringing many technical innovations over the years. In
the last two decades, the technical advances in ASR led to many consumer products used daily
by tens of millions of people such as Amazon’s Alexa and Google’s home speakers.

One of the very first systems systems capable of recognizing speech was developed in the early
1950’s by a research group at Bell Labs. The system was capable of recognizing ten different335

words: the numbers one through nine - and zero (’oh’). By measuring the spectral peaks resulting
from the resonance of the human vocal tract during vowel sounds, known as formant frequencies
(figure 3.6), for each digit, the known words could be recognized with an accuracy of 97% to
99%. One limitation was that these accuracies could only be reached after preliminary analysis
of the speaker’s voice. [9, 16]340

From the late seventies onwards, a focus on statistical approaches gained traction in favor of
the previously used pattern recognition methods. With the use of recently formulated Markov
chains and hidden Markov models, subsequent systems rapidly grew to a vocabulary of a thousand
word, which was later broken by IBM’s Tangora system, capable of recognizing over 20,000 words.
[16]345
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Figure 3.6: Photographs of formant frequency presentations of the recognized digits. From [9]

One particularly large milestone was the Sphinx-II system, developed in 1992 by, among
others, Xuedong Huang at Carnegie Mellon University. Sphinx-II, using an advanced statistical
approach, was the first system that had both a large vocabulary, and the ability to perform
speaker-independent detection. The Sphinx-II also won DARPA’s speech benchmark evaluation
in 1992. ASR systems are mainly evaluated by their Word Error Rate (WER) (equation 3.6) 350

[15, 14].

WER =
S + D + I

N
(3.6)

where:
S the number of substitutions
D the number of deletions
I the number of insertions 355

N the total number of words
Up until the late 2000’s, the use of hidden Markov models and similar statistical methods

still dominated in the ASR space. However, with the advent of deep neural networks (DNNs)
and the aforementioned transformer architecture, the paradigm has shifted yet again, bringing
light the the current state-of-the-art: OpenAI’s Whisper ASR. 360

Whisper

In 2022, OpenAI released Whisper, capable of ’Robust Speech Recognition via Large-Scale Weak
Supervision’ [30]. Trained on 563,000 hours of labeled English speech, and 117,000 hours of
labeled speech in 96 different languages, Whisper is the current state-of-the-art ASR system,
with a (post normalisation) word error rate that is similar to a professional human transcriber, 365

as seen in figure 3.7. Whisper makes use of an encode-decoder Transformer, as described in [37].
Input audio is first resampled and standardized, after which it is converted to a Mel Spectrogram,
normalized and fed in to the network. A full view of the simplified architecture can be seen in
figure 3.8.

3.3.2 Speaker diarisation 370

Speaker diarisation (SD) is the process of partitioning input audio containing multiple speakers,
in to separate segments containing single speakers. It aims to solve the question ’Who spoke
when?’ [35]. Speaker diarisation is a relatively new problem. In film and news studios the central
question is not necessarily a mystery; different speakers have different microphones, whose data
is known and separate at the time of processing and editing. 375

Central to speaker diarisation is voice profile feature extraction. When a reliable and accurate
method of embedding voice profiles is achieved, these voice profile vectors can be compared using
similarity measures such as cosine similarity or euclidean distance to find different speakers and
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Figure 3.7: Whisper WER compared to other companies and human professionals. From [30]

Figure 3.8: Simplified Whisper architecture. From [30]
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Figure 3.9: Desired speaker diarisation result. From [4]

when they speak. Different systems utilize different methods of obtaining feature vectors. Most
of these feature extractors use various representations of sound waves, with additional features 380

derived from pitch information and audio metadata, mostly from the standardised MPEG-7 audio
standard [19, 22]. Some of the most common features have a similar accuracy, Mel-frequency
cepstral coefficients (MFCCs) [18] and Line spectral pairs (LSPs) [22].

Pyannote

Pyannote.audio (pyannote) is the current state-of-the-art speaker diarisation mode. It is not 385

only a speaker diarisation model, but it also offers a range of speaker diarisation sub-modules.
These submodules include voice activity detection, overlapped detection speech, speaker change
detection, and more. [5, 4]

In most competitions, speaker diarisation accuracy is graded by four criteria: speaker con-
fusion rate (CONF), which is the duration of speaking where the speaker is mislabeled, false 390

alarm rate (FALSE), which is the duration of non-speech incorrectly classified as speech, missed
detection (MISS), which is the duration of speech that is incorrectly classified as non-speech
and Diarisation Error Rate (DER), which is a combination of the first three. As can be seen
from figure 3.10, pyannote scores at the top of most benchmarks. Top benchmarks are greatly
improved by their preview baseline, while DERs on benchmarks where pyannote does not score 395

at the top are fairly close, indicating a great overall performance. [4]

DER =
FALSE + CONF + MISS

ground truth duration
(3.7)

The pyannote system uses the following distinct steps on five seconds sliding windows of audio
[4]:

1. Local speaker segmentation, where these windows are analysed for different speakers and
when these different speakers start- and stop speaking. 400

2. Local speaker embedding, where the voice profiles of the different speakers in the sliding
windows get embedded.

3. Global agglomerative clustering, where local speakers are grouped into global clusters.

Pyannote diarisation outputs are formatted according to the Rich Transcription Time Marked
(RTTM) file format, described in [34]. 405

3.4 Retrieval Augmented Generation

Large Language Models (LLMs) store vast amounts of factual information within their param-
eters. For certain knowledge intensive queries or queries that require proprietary information
not included in the training data, an LLM’s knowledge recalling abilities are not enough. These
situations require external information provided in the prompt that the LLM can use to give a 410

complete and accurate answer [20]. Retrieval Augmented Generation (RAG) is the process of
enhancing the LLM’s question answering capabilities by finding relevant context and documents
and providing these to the LLM in the prompt. The LLM will then use the provided information
to answer the user’s question more accurate and with less hallucinations.

The retrieval of the relevant context is mostly done by the use of a dense vector index or any 415

other retrieval method described in section 3.2.
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Figure 3.10: Performance of the (default, optimized, and fine-tuned) pipelines on 11 different
benchmarks. The grey background marks the best results for each dataset as well as those less
than 5% worse relatively. From [4]

Figure 3.11: Retrieval Augmented Generation pipeline
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CHAPTER 4

Methods

All work done for this thesis can be found in the Github repository1.

4.1 Archival data extraction 420

Before starting any analysis work, the first research question, what are the different archive
formats local authorities host in order to comply with the Woo and how are these formats exploited
to retrieve as much information as possible?, needs to be answered.

An overwhelming amount of Dutch municipalities are allied with one of two service providers
that archive, host and index past council meetings. These two service providers are iBabs and 425

NotuBiz. NotuBiz alone serves over 250 local municipalities, provinces and water authorities,
while iBabs serves several hundred more.

Thus, in order to create a service compatible with most Dutch governmental bodies, a tool
must be developed that is capable of extracting meetings from at least these two hosting services.

NotuBiz 430

NotuBiz serves many municipalities in an easy to scrape, static format. Municipalities have the
option to host meetings of different categories and NotuBiz allows for a search to be performed
on many different objects such as meeting points, documents, years and meeting types. When
searching for a specific meeting type, NotuBiz sends a GET request to a remote server. By sniffing
the network upon making such a search request, I identified the endpoint used for meeting 435

searches and its necessary parameters. The important parameters are keywords, meaning the
meeting type, and organisations. This organisations parameter is quite cumbersome, since it is
a municipality specific code used to specify the municipality to be searched. The only way to
retrieve this is to make a search request on the desired NotuBiz website and to sniff the network.

I have created a scrape script in a Python Jupyter Notebook that can scrape any NotuBiz 440

archive with minimal user input needed. The user must simply provide the municipality name,
the download location, the base NotuBiz URL, the desired meeting types and years and the
unique municipality code mentioned earlier. The script will then find all meetings using Python’s
Beautiful Soup library, writing the meeting page links to a file. When all meeting links are found,
the webpages are parsed to look for the remote URL where the video is hosted. When this link 445

has been found on the page, the video will be downloaded and saved at the location specified
earlier.

iBabs

Unlike NotuBiz, iBabs is a dynamically loaded site, meaning data gets loaded in and out of the
browser in real-time as users interact with the site. One positive result of this approach is that 450

1https://github.com/deboradum/bachelorThesis
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it enables more responsive and interactive user experiences, as the web page (DOM) can update
content without requiring a full page reload. A negative effect is that it makes it more difficult
to scrape the webpage for its information and videos with simple scraping tools. In addition to
this fact, iBabs also uses a specific file format for their video archives, M3U. M3U is not a video
file, it is a text file that specifies the locations of parts of a video or audio file hosted on a remote455

server, allowing for more efficient streaming. Unlike NotuBiz, where the video link is statically
present in the web page, the M3U file on iBabs is only fetched from the server when the user
clicks the play video button.

Both these complications mean that static scraping tools and HTML parsers such as Python’s
urllib and Beautiful Soup are not equipped to deal with iBabs. To solve these issues, I used460

Selenium Web Driver. Selenium is an automatable web browser that can be programmed to
interact with the DOM and parse web pages. Selenium can also be used to sniff the browser’s
network for the M3U URL that is fetched from the iBabs servers when the play video button is
clicked.

Similar to NotuBiz, I have written a generic iBabs Jupyter Notebook scraper. The user only465

has to specify the municipality name, the download location and which years should be retrieved.
The tool will then fetch all categories that are listen on the home page using Beautiful Soup,
creating directories for the municipality, its categories and for each category the different years in
the process. Next it will use Beautiful Soup to get links to all pages hosting different videos and
writes these links URLs to a file containing all meeting webpage URLs. When all video pages470

have been scraped, Selenium is used to open each page, find and click the play video button.
After this, the browser network is sniffed for the fetched M3U file link which is written to the
another file.

After all M3U URLs have been retrieved, the file containing the download links is read and
videos are downloaded using a M3U download tool 2.475

4.2 Video- and audio analysis

This section explains the design and design choices made in order to answer the second research
question, What state-of-the-art video- and audio analysis tools can be used to improve searcha-
bility of the meetings, and how accurate are these in the given circumstances?

Machine learning is a constantly changing field that evolves rapidly. Every month, dozens480

of new models and model architectures are released that are more effective in specific niche
scenarios. With this in mind, one of the fundamental principles I decided to uphold in the
creation of the analysis pipeline, is that the design of the AI clients must be as modular as
possible. This is primarily achieved through the implementation of Python class inheritance.

4.2.1 Whisper485

The ASR client, responsible for transcribing downloaded meetings, is implemented with Whisper
ASR for reasons explained in section 3.3.1. As for the ASR client, A base Transcriber class
specifying what methods must be implemented is defined. Then, for each new ASR model, a
child class can be created where only model-specific methods are written. In the case of the
ASR client, the only model-specific method that must be implemented is the transcribe method.490

transcribe should take in an input path and an output path, which will be used to load the
audio file and save the transcription. Other methods such as loading transcriptions are model
invariant.

In the current analysis pipeline code, two transcriber classes have been implemented: one
client using Whisper on MLX, a Python array framework allowing fast machine learning on495

Apple silicon devices, and one using the official Whisper implementation on PyTorch. Since the
underlying models and weights are the same however, there will not be a difference in the output
of these two different transcribers.

Listing 4.1: Modular transcriber class implemented in Apple’s MLX Whisper port and PyTorch’s
Whisper port.

2https://github.com/josephcappadona/m3u8downloader
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class Transcr ibe r :
def t r a n s c r i b e ( s e l f , i n p u t f i l e , o u t p u t f i l e ) : 500

print ( ” Transcr ibe  method  not  implemented ! ” )
return WhisperReturnCodes .NOT IMPLEMENTED

def l o a d t r a n s c r i p t i o n ( s e l f , path ) :
# Logic which i s not s p e c i f i c to any p a r t i c u l a r model . 505

return t r a n s c r i p t i o n

class MLX Transcriber ( Transc r ibe r ) :
def i n i t ( s e l f , model ) : 510

s e l f . model = model

def t r a n s c r i b e ( s e l f , i n p u t f i l e , o u t p u t f i l e ) :
# MLX whisper t r an s c r i b e l o g i c .
return 515

class Torch Transcr iber ( Transc r ibe r ) :
def i n i t ( s e l f ) :

s e l f . model = whisper . load model ( ”medium” )
520

def t r a n s c r i b e ( s e l f , i n p u t f i l e , o u t p u t f i l e ) :
# PyTorch whisper t r an s c r i b e l o g i c .
return

4.2.2 pyannote

The speaker diarisation client is designed following the same principles and methodologies as 525

those employed in the Whisper client. A base class Diarisor defining the model-specific methods
is declared, which is used as a parent class by model specific classes, in the case of this project,
the Pyannote class.

The speaker diarisation client has two model-dependant methods: diarise and embed. The
diarise method takes in an input path and an output path, which are used to load the audio and 530

save the generated speaker diarisation output. The embed method takes in an input file and a
start- and end time. It will then embed the voice profile of the audio within the specified time
frame.

As mentioned in section 3.3.2, pyannote.audio is the current state-of-the-art in the field of
speaker segmentation. Because of this, the model used in the final architecture is pyannote.audio 535

V3.2.0, the latest version. In case a new, better model is released, this model can be easily
implemented due to the modular design of the client.

Listing 4.2: Modular speaker diarisation class.

class D i a r i s o r :
def d i a r i s e ( s e l f , i n p u t f i l e , o u t p u t f i l e ) :

print ( ” D i a r i s e  method  not  implemented ! ” ) 540

return PyannoteReturnCodes .NOT IMPLEMENTED

def embed( s e l f , i n p u t f i l e , from time , to t ime ) :
print ( ”Embed  method  not  implemented ! ” )
return PyannoteReturnCodes .NOT IMPLEMENTED 545

4.2.3 Embedder

Practically all sentence embedding models present day are released on HuggingFace, making
modularisation easy. HuggingFace embed models can be used through a standard method encode
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in the SentenceTransformers framework developed by HuggingFace. This means that only the
class initialisation method is model-specific, while the embed method can be model invariant550

since it is called through the SentenceTransformers API.

Listing 4.3: Modular embed class.

class Embedder :
def i n i t ( s e l f ) :

print ( ” I n i t  method  not  implemented ! ” )
return EmbedReturnCodes .NOT IMPLEMENTED555

def embed( s e l f , t ex t ) :
i f not s e l f . model :

return EmbedReturnCodes .NO MODEL
560

return s e l f . model . encode ( t ext )

Choosing the appropriate embedding model for this project is not as simple as looking at
the current leaderboard and selecting the top-performing model. The reason for this is the vast
array of available embedding models, each optimised for specific niche applications. The primary
requirements for this project be lightweight, fast, and multilingual. Given that thousands of565

hours of video material need to be embedded, a model with low computational demands and
rapid processing capabilities is crucial. Even more important however, is the requirement for
multilinguality. Multilinguality ensures that semantically similar sentences in different languages
will still map close to each other in the vector space. Since most monolingual embedding model
are trained on English text, running these models on Dutch sentences will lead to suboptimal570

performance.
In the end I selected the sentence-transformers/all-mpnet-base-v2 model 3. Its compact size

of only 109 million parameters, coupled with its multilingual capabilities make it the perfect
model for this task.

4.3 Agenda point segmentation575

To answer research question three, how accurately can such a video be segmented into the mean-
ingfully different parts which are discussed, an agenda point topic segmentation client needs to
be written. It should take in the transcript of a meeting, and it should return a list of agenda
points and times, specifying when these topics start and end.

The concept of the topic segmentation client is quite simple. First, the transcript of a meeting580

is fed into an LLM with the task to label the most important topics discussed during the meeting,
in chronological order. Next, for each topic, the LLM should figure out when the agenda point
starts in the meeting. This is done using a sliding window over the transcript. One by one,
sentences, along with their starting time and the current topic, are sent to a LLM. The LLM
is then tasked to return either true or false depending on if it thinks the agenda point starts at585

the current sentence. When this is the case, the topic is considered labeled and the next topic is
prompted. A pseudocode representation of this algorithm is presented in 1.

4.4 Information retrieval

For research question four, What state-of-the-art information retrieval techniques can be leveraged
to develop an efficient video information retrieval system?, a Weaviate vector database Python590

client has been built. The created Weaviate client allows the user to easily perform simple
operations such as creating and deleting collections (similar to tables in relational databases),
inserting and deleting entries and getting collection metadata. Besides these basic operations,
three search methods described in section 3.2 have been implemented: Vector search, BM25
search and Hybrid search.595

3https://huggingface.co/sentence-transformers/all-mpnet-base-v2
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Algorithm 1 Agenda topic Segmentation Algorithm

Require: Transcript T of a meeting
Topics← LLM(T, task=”label”)
for each Topic in Topics do

Timed← False
i← 1
while not Timed and i ≤ length(T ) do

Sentence← T [i]
Response← LLM(input={Sentence, Topic}, task=”topicStart?”)
if Response is True then

StartT ime← getStartTime(Sentence)
Timed← True

else
i← i + 1

end if
end while

end for
return TimedTopics

All search methods allow the user to specify filter parameters such as government, year,
speaker and more. Invariant of employed the search method, the client returns data in a uniform
format—an array of relevant result objects. Each result object within this array includes prop-
erties such as meeting ID, government, year, etc., the result’s UUID, its vector representation,
and its relevance score. 600

The Weaviate database consists of two different collections: Transcripts and Speakers. The
Transcripts collection is organised by uninterrupted speaking turns of individuals. Each entry
within this collection is linked to the embedding of the content of this speaking turn, as well as
to the voice profile embedding of the speaker. The Speakers collection is indexed by voice profile
embeddings. This collection associates each voice profile with a corresponding speaker’s name, 605

providing the web application the ability to map each speaking turn to the correct speaker’s
identity.

4.5 RAG chat bot

RAG consists of two parts: retrieval and generation. A user query is first fed in to the retrieval
system which returns one or more pieces of context that are most relevant to the specified query. 610

Next, this context is added to the user query after which a LLM will answer the query using the
acquired context.

In essence, the created chat bot pipeline is similar to figure 3.11. The final web app uses a
BM25 based retrieval pipeline as specified in section 4.4. If no results are found, this is signaled
to the user and the process is aborted. In the likely scenario that results are found, the results 615

are added to the query and the LLM is called to answer the question.
Identical to the other clients, the LLM client designed to be modular and easily swapped.

The base model only has a single model dependant method: run. run takes the chat history as
an arguments and prompts the LLM. In the final product one of two LLM clients are used: A
locally running Llama client or a GPT client that calls the OpenAI API. The former can be used 620

on machines that have sufficient RAM and a strong GPU. The latter is recommended for other
machines. Since it calls the OpenAI GPT API it is both quick and accurate, bringing with it
only a small cost of $15 per one million output tokens.

Listing 4.4: Modular LLM class.

class LLM:
def run ( s e l f , h i s t o r y ) : 625

print ( ”run  method  not  implemented ! ” )
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Figure 4.1: Web application video view

return LLMReturnCodes .NOT IMPLEMENTED

4.6 Search engine

To answer the main research question, How can AI be utilized in order to increase information
retrievability of large video archives, in particular of democratically elected councils?, all previ-630

ously mentioned functionalities should be combined. To do this, I created a user-friendly search
engine using front-end framework Vue3.

The web app offers two primary functionalities. The first is a global search feature, enabling
users to search through all available videos for spoken information. For more specific queries,
users can apply selectable filters to search by a particular government, meeting type, or year.635

The second functionality allows users to navigate the video archive by selecting the gov-
ernment, meeting type, and year. Once a video is selected, it is displayed and can be played.
Below the video, the speakers, their speaking turns, and the meeting discussion points with cor-
responding timestamps are shown. Clicking on a speaker or discussion point advances the video
to the relevant timestamp. Additionally, a search bar beneath the video, similar to the global640

search, permits users to search within the video for specific information. This in-video search
also supports filtering by speakers and discussion points.

Adjacent to the video, a LLM powered chat window enables users to ask questions and retrieve
information related to the video content in a conversational way.

4.6.1 Analysis pipeline645

Before a municipality can be added to the archive, all meetings have to be downloaded and
analysed. A diagram of the analysis pipeline is shown in figure 4.2.

The two most important analysis scripts are transcribe and diarise. These script run Whisper
and pyannote respectively, and create a file containing the transcript and diarisation. data. the
diarisation data is then used to create a diarisationObject, a JSON file containing the voice650

profile embedding of each speaker and when they are speaking. Also, a speakerSheet is created.
This is and Excel file that an administrator should fill in manually. It maps a detected speaker
to a given name, allowing speaker recognition including names. Annotated speakers will also be
available for videos that were not annotated, meaning that manual speaker labeling only has to
be done a single time per speaker.655

The transcript and diarisation information together are used to create a turnObject. This is
a JSON file that contains text of each speaking turn for each speaker and the textual embedding.
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Figure 4.2: Video analysis pipeline

When this file is created it is combined with the diarisationObject in order to create the final
objects that will be added to Weaviate.

4.6.2 Deployability 660

The entire search engine web app, its back-end and the Weaviate vector database are easily
deployed using a custom Docker script. In total, over three thousand hours of meetings has
been collected and analysed. The raw video files for these meetings alone are over 2 terabytes.
Due to this large storage requirement, The docker image does not include the videos, only the
extracted information needed by the front-end and Weaviate. This necessary information is only 665

3 gigabytes, which is much more easily distributed.
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CHAPTER 5

Evaluation

5.1 Video- and audio analysis

To obtain a satisfactory answer to research question 2, an evaluation of the two analysis tools 670

used in the pipeline—Whisper and pyannote—is necessary.

5.1.1 Whisper

The Word Error Rate (WER) (equation 3.6) is a standard metric to evaluate ASR systems.
To evaluate Whisper’s performance on the scraped meetings, I manually transcribed 40 min-

utes of meetings, selected randomly from seven different meetings. These randomly picked meet- 675

ings are spread out over five different years, and three different municipalities. To account for
structural- and unimportant transcription differences, a normalisation is applied to both the ref-
erence and the hypothesis text. This normalisation removes all non-alphabetical characters and
converts all text to lowercase.

as can be seen from figure 5.1, the transcription WER in regular meetings is in line with 680

what can be expected from the Whisper benchmarks presented in [30] (illustrated in figure 3.7).
One interesting observation is the large difference between Zoom meetings and regular meetings.
For a couple years during the nationwide COVID regulations, the municipality meetings took
place online. During these meetings, every participant used their own device and microphone -
a general lower audio quality - with large quality differences between different speakers probably 685

contributing to lower transcription accuracy.
Another cause for error is when a speaker speaks quickly, without perfect articulation. An

example of such a situation where Whisper gets confused, is visualized in figure 5.2. In this
figure, green text represents a substitution, while red text represents a deletion. The snippet of
text is taken from a 2019 Haarlem meeting, with code 622012, starting at 01:47:10. Here, the 690

speaker is not clearly understandable, resulting in a transcription not making the most sense.
Luckily, these situations are not very common, as evidenced by the global WER given in figure
5.1.

5.1.2 Pyannote

As described in section 3.3.2, speaker diarisation is scored based on the Diarisation Error Rate 695

(DER). At the time of writing, pyannote.audio offers the best performing speaker diarisation, as
shown in figure 3.10.

To test how well pyannote performs on the municipality dataset, I manually annotated 30
random minutes of meetings, distributed over five different meetings, from four different munic-
ipalities over three years. I used audio tool Audacity 1 to obtain millisecond-accurate times- 700

tamps. During manual diarisation, speakers were named arbitrarily. After diarisation, the

1https://www.audacityteam.org/
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Figure 5.1: Whisper ASR Performance on Municipality Meetings. This figure displays the Word
Error Rate (WER) for Whisper across various meetings. The data, comprising 40 minutes of
manually transcribed audio from seven different meetings spanning five years and three munic-
ipalities, was normalized to remove non-alphabetical characters and convert text to lowercase.
Results show WER for regular meetings is consistent with Whisper benchmarks presented in
[30]. Notably, WER is higher for Zoom meetings, likely due to varied audio quality from differ-
ent devices and microphones used by participants.

Figure 5.2: Visual example of Whisper ASR WER Analysis. This figure visualizes the WER
for a snippet from a 2019 Haarlem meeting (code 622012) starting at 01:47:10. The Whisper
generated reference transcription is compared with a manual transcription. Green text indicates
substitutions, where a word in the hypothesis replaces a word in the reference. Red text indicates
deletions, where words present in the reference are missing in the hypothesis. This example
contains a fast, unclear speech, resulting in some transcription errors, with specific substitutions
and deletions highlighted.

reference: ... ben ik toch een beetje benieuwd naar de reactie van het college.

En ik heb inderdaad ook het gevoel dat we vanavond toch al op het zuid gaan komen.

Dus waarom zouden we dat nu nog geheim verklaaren? ...

hypothesis: ... ben ik toch een beetje benieuwd naar de reactie van het college.

En ik heb inderdaad ook het gevoel er wordt vanavond gewoon een besluit genomen,

dus waarom zouden we dat nu nog geheim verklaren? ...

WER delta: ... ben ik toch een beetje benieuwd naar de reactie van het college

en ik heb inderdaad ook het gevoel er (dat) wordt (we) vanavond toch al op gewoon

(het) een (zuid) besluit (gaan) genomen (komen) dus waarom zouden we dat nu nog

geheim verklaren (verklaaren) ...
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manual speaker names were mapped to the speaker names given by pyannote to make sure
the confusion rate metric can be performed.

One example of how a such a manual diarisation looks relative to a pyannote diarisation, can
be seen in figure 5.3. This snippet is taken from a Ridderkerk meeting in 2022, with code 938576, 705

starting at 00:41:10. As can be seen from the figure, the graph is mostly identical, ignoring some
small starting- and ending points discrepancies. One thing that stands out however, is the
addition of two very short speaking turns picked up by pyannote. The first occurrence of this
happens around 2530 seconds, where speaker 17 allegedly starts talking. This turns out to be
just some noise resulting from the Zoom. Another the other short speaking turn, occurring at 710

around 2615 seconds, is just a noise made by a meeting member, not worthy of being classified
as speech.

(a) pyannote diarisation

(b) Manual diarisation

Figure 5.3: Comparison of pyannote and Manual Diarisation for a Ridderkerk Meeting. This
figure compares the pyannote.audio diarisation (a) with a manual diarisation (b) for a meeting
in Ridderkerk, 2022 (code 938576), starting at 00:41:10. The graphs show overall agreement
between the two methods, with minor, expectable discrepancies at the start and end points of
speaking turns.

To address systemic differences in the idea when speech begins and ends, I performed two
metrics. One with a 500-milliseconds collar, one with a 250-milliseconds collar, and one without
a collar. A collar is a margin of time around each speaker’s turn boundary. A 250 milliseconds 715

collar would mean that the 125-milliseconds before and after each speaker change is excluded
from evaluation.

Comparing figure 5.4 to the benchmark results in figure 3.10, some interesting observations
can be made. Firstly, the measured Confusion rate is significantly lower than the official bench-
marks. Additionally, the average Miss- and False Alarm rates are roughly equivalent to those 720

in the benchmark results. However, my application exhibits a few high outliers, predominantly
originating from Zoom meetings. These outliers, as discussed in the previous section, are in-
troduced by the same drawbacks associated with the online meeting environment. Finally, the
Diarisation Error Rate, combining all previous mentioned metrics, is again fairly similar to the
official benchmarks, even including the Zoom outliers. For all evaluated metrics, the median val- 725

ues are either comparable to- or notably lower than those in the official benchmarks, indicating
a strong general performance. One potential reason as to why pyannote seems to perform better
on these meetings, is the relatively simple structure of the meetings. There is not too much
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Figure 5.4: Comparison of diarisation errors for pyannote.audio across different collar sizes (0 ms,
250 ms, 500 ms). Data were collected from over 30 minutes of annotated meetings, distributed
over five different meetings from four municipalities spanning three years. The graph shows
similar, if not slightly improved results from the official benchmarks in figure 3.10.

overlapping speech and speakers generally are speaking through good microphones.

5.2 Agenda point segmentation730

Some meetings already had their agenda points uploaded and available in the archive. By using
these pre-labeled agenda points as a ground truth, I tested the created topic segmentation script
described in section 4.3, thus answering research question 3.

I ran the segmentation script, represented in algorithm 1, on 10 different meetings over two
years, using their provided agenda points as a ground truth. Next, I counted the number of735

missed agenda points and the number of false agenda points.
The disappointing results from figure 5.5 indicate that the developed method of automatic

topic segmentation in these types of government meetings is not sufficient yet. Based on the
already available agenda points, a meeting has about nine agenda points on average. This
information makes the results from figure 5.5 even poorer. Although most true agenda points740

are labeled, a false positive rate of 5 topics per meeting, or more than 50% on average, is just
unacceptable.

Besides the uninspiring accuracy results, there are some other hurdles preventing topic seg-
mentation from succeeding. One is the limited context window described in section 4.3. Second
is the sliding window approach used. Long meetings easily contain several thousand spoken sen-745

tences, all of which need to be fed to the LLM separately. Even with heavy optimization such
as combining sentences, a single video can easily take multiple hours to process.

32



Figure 5.5: Evaluation of automatic agenda point segmentation accuracy. The figure displays the
performance of an automatic topic segmentation script tested on 10 different government meet-
ings, distributed over two years. The evaluation, based on the number of missed and false agenda
points compared to pre-labeled ground truth, reveals significant deficiencies: the segmentation
method produced a false positive rate of more than 50%, identifying approximately five incorrect
topics per meeting. These results highlight the current limitations of the method, including the
restricted context window and the inefficiency of the sliding window approach, which contributes
to lengthy processing times.

5.3 Search engine

In this section, the developed methods for research question 4 and 5 are evaluated. The imple-
mentation that is to be evaluated is directly embedded in the final search engine. Thus, this 750

section indirectly also provides an evaluation to the implementation of the main research ques-
tion, How can AI be utilized in order to increase information retrievability of large video archives,
in particular of democratically elected councils? To do this, I gathered 13 participants and tasked
them to find the answer to five questions using five different search methods.

1. The contemporary way, scrolling through the video and using its agenda points; 755

2. Using the vector search engine;

3. Using the BM25 search engine;

4. Using the hybrid search engine;

5. Using the chat function.

For each participant, the search methods were randomly mapped to a question. The partic- 760

ipants first received a breakdown of the search engine, explaining how everything works. Then,
they got some practice time to get familiar with the tools. Then, when they felt comfortable with
the search engine, the participants had three minutes to answer each question. In the scenario
where a satisfactory answer is not found within the given time, the search is aborted and this is
noted. 765

The questions were:

1. What was the main reason given for the delay in the harmonising of outdoor sports?

33



Figure 5.6: Measure of Search Method Efficiency. The figure shows the average search times
and variability for five search methods used by 13 participants to answer questions from video
archives. Each participant was randomly assigned a search method for each question, and
searches were conducted within a three-minute time limit. BM25 search was the most effi-
cient among Weaviate methods, while the contemporary method of scrolling through video was
the least efficient, failing to find an answer within the time limit 69% of the time. Despite the
chat function being the fastest on average, it struggled with validity, giving incorrect answers
23% of the time.

2. What are the expected advantages to the installation of the gardens surrounding under-
ground trash containers?

3. What is the difference between the first and second playgrounds?770

4. How late is the guest speaker awoken by the humming sound of nearby windmills?

5. What is the goal of the proposal with regards the the ’gemeenschappelijke regeling van de
bedrijfsvoeringspartner’?

Figure 5.6 shows the results of this experiment, disregarding the search attempts where an
answer was not found in time. Observing these results, it can be concluded that the contemporary775

method of scrolling through the video is by far the least efficient. On top of the fact that the
average search time is almost three times as slow as the second slowest method, in 69% of the
cases, a valid answer was not found within the given three minutes.

The three Weaviate search methods all performed roughly equal, with BM25 taking the
lead. As can be seen, vector search brought a higher degree of variability with it. Despite this780

variability, the interquartile range is not remarkably high compared to the other Weaviate search
methods.

On the surface the chat functionality seems to work the quickest. However, this could have
something to do with the specific questions asked. For about 23% of the participants, the chat
functionality could not give a valid answer. This is because if the answer to the questions is785

not among the top results returned by Weaviate, the LLM will not be capable of answering the
question. In some cases, the LLM even hallucinated an answer, thinking it was correct despite
this not being the case. In the prompt the LLM is tasked to answer that it does not know
something if the information is not in the provided context. Sometimes, this instruction is not
properly followed and the LLM will make up an answer. Unfortunately, it is not easily detectable790
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when an answer is a hallucination or true. Thus, one should not rely without second thought on
answers given by the chat bot. When receiving a response, the answer should always be verified.
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CHAPTER 6

Conclusion

Looking back at the main research question how can AI be utilized in order to increase informa- 795

tion retrievability of large video archives, in particular of democratically elected councils? It can
be concluded from figure 5.6 that a strong and user friendly system of information retrievability
has indeed been developed, as indicated by the significantly quicker retrieval times.

This has been achieved by making use of a custom written Whisper ASR and pyannote.audio
speaker diarisation pipeline. In this pipeline, videos are transcribed and diarised, after which 800

they are embedded and inserted in a Weaviate vector database. Both video analysis tool im-
plementations and the Weaviate are measured to perform either on par with- or better than
the current state-of-the-art benchmark evaluations, answering the research question what state-
of-the-art video- and audio analysis tools can be used to improve searchability of the meetings,
and how accurate are these in the given circumstances? and what state-of-the-art information 805

retrieval techniques can be leveraged to develop an efficient video information retrieval system?.
The research question topic segmentation research question, how accurately can such a video

be segmented into the meaningfully different parts which are discussed? did not receive an answer
as positive as the previous research questions. It turned out that several contemporary compli-
cations, namely context window and compute power, hindered the development of creating an 810

accurate topic segmentation system usable in governmental meeting archives.
Finally, a chat bot system with access to the Weaviate database allows the user to ask

questions regarding specific meetings in a conversational style. As shown in figure 5.6, this chat
bot scores significantly better than the contemporary search method and slightly better than
the three other implemented search methods, indicating that the research question how well can 815

the developed search system be integrated with a large language model, creating a helpful chat bot
capable of answering questions and providing complementary information when needed? can be
positively answered, with the caveat that the chat bot will sometimes hallucinate if it can not
find an answer. It is hard to know exactly when responses are hallucinations, meaning manual
verification is always necessary when receiving an answer from the chat bot. 820
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[5] Hervé Bredin et al. “Pyannote. audio: neural building blocks for speaker diarization”.
In: ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE. 2020, pp. 7124–7128.

[6] Eva Maxfield Brown et al. “Council Data Project: Software for Municipal Data Collection,
Analysis, and Publication”. In: J. Open Source Softw. 6 (2021), p. 3904. doi: 10.21105/ 835

joss.03904.

[7] Peter F Brown et al. “Class-based n-gram models of natural language”. In: Computational
linguistics 18.4 (1992), pp. 467–480.

[8] Tom B. Brown et al. Language Models are Few-Shot Learners. 2020. arXiv: 2005.14165
[cs.CL]. 840

[9] Ken H Davis, R Biddulph, and Stephen Balashek. “Automatic recognition of spoken digits”.
In: The Journal of the Acoustical Society of America 24.6 (1952), pp. 637–642.

[10] Jacob Devlin et al. BERT: Pre-training of Deep Bidirectional Transformers for Language
Understanding. 2019. arXiv: 1810.04805 [cs.CL].

[11] Ayse Goker and John Davies. Information retrieval: Searching in the 21st century. John 845

Wiley & Sons, 2009.

[12] Yikun Han, Chunjiang Liu, and Pengfei Wang. A Comprehensive Survey on Vector Database:
Storage and Retrieval Technique, Challenge. 2023. arXiv: 2310.11703 [cs.DB].

[13] Anna Huang et al. “Similarity measures for text document clustering”. In: Proceedings
of the sixth new zealand computer science research student conference (NZCSRSC2008), 850

Christchurch, New Zealand. Vol. 4. 2008, pp. 9–56.

[14] Xuedong Huang, James Baker, and Raj Reddy. “A historical perspective of speech recog-
nition”. In: Communications of the ACM 57.1 (2014), pp. 94–103.

[15] Xuedong Huang et al. “An overview of the SPHINX-II speech recognition system”. In:
Human Language Technology: Proceedings of a Workshop Held at Plainsboro, New Jersey, 855

March 21-24, 1993. 1993.

[16] B. Juang and Lawrence Rabiner. “Automatic Speech Recognition - A Brief History of the
Technology Development”. In: (Jan. 2005).

39

https://doi.org/10.1145/1873951.1873986
https://doi.org/10.21105/joss.03904
https://doi.org/10.21105/joss.03904
https://doi.org/10.21105/joss.03904
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/2310.11703


[17] Martin J. Jurafsky D. Speech and Language Processing: An Introduction to Natural Lan-
guage Processing, Computational Linguistics and Speech Recognition, publisher = Prentice860

Hall. 2008.

[18] Hyoung-Gook Kim and T. Sikora. “Comparison of MPEG-7 audio spectrum projection
features and MFCC applied to speaker recognition, sound classification and audio seg-
mentation”. In: 2004 IEEE International Conference on Acoustics, Speech, and Signal
Processing. Vol. 5. 2004, pp. V–925. doi: 10.1109/ICASSP.2004.1327263.865

[19] Margarita Kotti, Vassiliki Moschou, and Constantine Kotropoulos. “Speaker segmentation
and clustering”. In: Signal processing 88.5 (2008), pp. 1091–1124.

[20] Patrick Lewis et al. “Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks”.
In: Advances in Neural Information Processing Systems. Ed. by H. Larochelle et al. Vol. 33.
Curran Associates, Inc., 2020, pp. 9459–9474. url: https://proceedings.neurips.cc/870

paper_files/paper/2020/file/6b493230205f780e1bc26945df7481e5-Paper.pdf.

[21] Jiwei Li et al. Visualizing and Understanding Neural Models in NLP. 2016. arXiv: 1506.
01066 [cs.CL].

[22] Lie Lu and Hong-Jiang Zhang. “Speaker change detection and tracking in real-time news
broadcasting analysis”. In: Proceedings of the tenth ACM international conference on Mul-875

timedia. 2002, pp. 602–610.

[23] Yu. A. Malkov and D. A. Yashunin. Efficient and robust approximate nearest neighbor
search using Hierarchical Navigable Small World graphs. 2018. arXiv: 1603.09320 [cs.DS].

[24] Yury Malkov et al. “Approximate nearest neighbor algorithm based on navigable small
world graphs”. In: Inf. Syst. 45 (2014), pp. 61–68. doi: 10.1016/j.is.2013.10.006.880

[25] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. Introduction to In-
formation Retrieval. Cambridge, UK: Cambridge University Press, 2008. isbn: 978-0-521-
86571-5. url: http://nlp.stanford.edu/IR-book/information-retrieval-book.
html.

[26] Schütze H. Manning C. Foundations of Statistical Natural Language Processing, publisher885

= The MIT Press. 1999.

[27] Tomas Mikolov et al. Efficient Estimation of Word Representations in Vector Space. 2013.
arXiv: 1301.3781 [cs.CL].
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